mohamedeijy commited on
Commit
0e1b329
1 Parent(s): a55440d

layoutlmv3-cordv2

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-cordv2
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # layoutlmv3-cordv2
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3190
24
+ - Precision: 0.8830
25
+ - Recall: 0.8864
26
+ - F1: 0.8847
27
+ - Accuracy: 0.9201
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 1500
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 0.3333 | 100 | 1.5910 | 0.5469 | 0.4954 | 0.5199 | 0.5926 |
59
+ | No log | 0.6667 | 200 | 1.0875 | 0.6533 | 0.6685 | 0.6608 | 0.7540 |
60
+ | No log | 1.0 | 300 | 0.8007 | 0.7629 | 0.7782 | 0.7705 | 0.8144 |
61
+ | No log | 1.3333 | 400 | 0.6082 | 0.8099 | 0.8130 | 0.8114 | 0.8471 |
62
+ | 1.2178 | 1.6667 | 500 | 0.5302 | 0.8222 | 0.8184 | 0.8203 | 0.8568 |
63
+ | 1.2178 | 2.0 | 600 | 0.5046 | 0.8300 | 0.8261 | 0.8280 | 0.8624 |
64
+ | 1.2178 | 2.3333 | 700 | 0.4537 | 0.8498 | 0.8485 | 0.8492 | 0.8785 |
65
+ | 1.2178 | 2.6667 | 800 | 0.4270 | 0.8566 | 0.8586 | 0.8576 | 0.8870 |
66
+ | 1.2178 | 3.0 | 900 | 0.3938 | 0.8680 | 0.8686 | 0.8683 | 0.8980 |
67
+ | 0.4128 | 3.3333 | 1000 | 0.3926 | 0.8765 | 0.8717 | 0.8741 | 0.9031 |
68
+ | 0.4128 | 3.6667 | 1100 | 0.3403 | 0.8644 | 0.8717 | 0.8680 | 0.9087 |
69
+ | 0.4128 | 4.0 | 1200 | 0.3326 | 0.8861 | 0.8841 | 0.8851 | 0.9159 |
70
+ | 0.4128 | 4.3333 | 1300 | 0.3223 | 0.8824 | 0.8872 | 0.8848 | 0.9201 |
71
+ | 0.4128 | 4.6667 | 1400 | 0.3175 | 0.8852 | 0.8879 | 0.8866 | 0.9210 |
72
+ | 0.274 | 5.0 | 1500 | 0.3190 | 0.8830 | 0.8864 | 0.8847 | 0.9201 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.43.0.dev0
78
+ - Pytorch 2.3.0+cu121
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.19.1