mohamedeijy
commited on
Commit
•
0e1b329
1
Parent(s):
a55440d
layoutlmv3-cordv2
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-cordv2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-cordv2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3190
|
24 |
+
- Precision: 0.8830
|
25 |
+
- Recall: 0.8864
|
26 |
+
- F1: 0.8847
|
27 |
+
- Accuracy: 0.9201
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 1500
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 0.3333 | 100 | 1.5910 | 0.5469 | 0.4954 | 0.5199 | 0.5926 |
|
59 |
+
| No log | 0.6667 | 200 | 1.0875 | 0.6533 | 0.6685 | 0.6608 | 0.7540 |
|
60 |
+
| No log | 1.0 | 300 | 0.8007 | 0.7629 | 0.7782 | 0.7705 | 0.8144 |
|
61 |
+
| No log | 1.3333 | 400 | 0.6082 | 0.8099 | 0.8130 | 0.8114 | 0.8471 |
|
62 |
+
| 1.2178 | 1.6667 | 500 | 0.5302 | 0.8222 | 0.8184 | 0.8203 | 0.8568 |
|
63 |
+
| 1.2178 | 2.0 | 600 | 0.5046 | 0.8300 | 0.8261 | 0.8280 | 0.8624 |
|
64 |
+
| 1.2178 | 2.3333 | 700 | 0.4537 | 0.8498 | 0.8485 | 0.8492 | 0.8785 |
|
65 |
+
| 1.2178 | 2.6667 | 800 | 0.4270 | 0.8566 | 0.8586 | 0.8576 | 0.8870 |
|
66 |
+
| 1.2178 | 3.0 | 900 | 0.3938 | 0.8680 | 0.8686 | 0.8683 | 0.8980 |
|
67 |
+
| 0.4128 | 3.3333 | 1000 | 0.3926 | 0.8765 | 0.8717 | 0.8741 | 0.9031 |
|
68 |
+
| 0.4128 | 3.6667 | 1100 | 0.3403 | 0.8644 | 0.8717 | 0.8680 | 0.9087 |
|
69 |
+
| 0.4128 | 4.0 | 1200 | 0.3326 | 0.8861 | 0.8841 | 0.8851 | 0.9159 |
|
70 |
+
| 0.4128 | 4.3333 | 1300 | 0.3223 | 0.8824 | 0.8872 | 0.8848 | 0.9201 |
|
71 |
+
| 0.4128 | 4.6667 | 1400 | 0.3175 | 0.8852 | 0.8879 | 0.8866 | 0.9210 |
|
72 |
+
| 0.274 | 5.0 | 1500 | 0.3190 | 0.8830 | 0.8864 | 0.8847 | 0.9201 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.43.0.dev0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.19.1
|