mohamedemam
commited on
Commit
•
f35281e
1
Parent(s):
45def9f
Create pipline
Browse files
pipline
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Pipeline
|
2 |
+
|
3 |
+
|
4 |
+
class MyPipeline:
|
5 |
+
|
6 |
+
def __init__(self,model,tokenizer):
|
7 |
+
self.model=model
|
8 |
+
self.tokenizer=tokenizer
|
9 |
+
|
10 |
+
def chat_Format(self,context, quetion, answer):
|
11 |
+
return "Instruction:/n check answer is true or false of next quetion using context below:\n" + "#context: " + context + f".\n#quetion: " + quetion + f".\n#student answer: " + answer + ".\n#response:"
|
12 |
+
|
13 |
+
|
14 |
+
def __call__(self, context, quetion, answer,generate=1,max_new_tokens=4, num_beams=2, do_sample=False,num_return_sequences=1):
|
15 |
+
inp=self.chat_Format(context, quetion, answer)
|
16 |
+
w = self.tokenizer(inp, add_special_tokens=True,
|
17 |
+
pad_to_max_length=True,
|
18 |
+
return_attention_mask=True,
|
19 |
+
return_tensors='pt')
|
20 |
+
response=""
|
21 |
+
if(generate):
|
22 |
+
outputs = self.tokenizer.batch_decode(self.model.generate(input_ids=w['input_ids'].cuda(), attention_mask=w['attention_mask'].cuda(), max_new_tokens=max_new_tokens, num_beams=num_beams, do_sample=do_sample, num_return_sequences=num_return_sequences), skip_special_tokens=True)
|
23 |
+
response = outputs
|
24 |
+
|
25 |
+
s =self.model(input_ids=w['input_ids'].cuda(), attention_mask=w['attention_mask'].cuda())['logits'][0][-1]
|
26 |
+
s = F.softmax(s, dim=-1)
|
27 |
+
yes_token_id = self.tokenizer.convert_tokens_to_ids("صØŃÙĬØŃ")
|
28 |
+
no_token_id = self.tokenizer.convert_tokens_to_ids("خط")
|
29 |
+
print(yes_token_id,no_token_id)
|
30 |
+
for i in ["Yes", "yes", "True", "true","صحيح"]:
|
31 |
+
s[yes_token_id] += s[self.tokenizer.convert_tokens_to_ids(i)]
|
32 |
+
for i in ["No", "no", "False", "false","خطأ"]:
|
33 |
+
s[no_token_id] += s[self.tokenizer.convert_tokens_to_ids(i)]
|
34 |
+
true = (s[yes_token_id] / (s[no_token_id] + s[yes_token_id])).item()
|
35 |
+
return {"response": response, "true": true}
|
36 |
+
|