monai
medical
katielink commited on
Commit
a23faaa
1 Parent(s): 90c468a

update license files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ models/model.ts filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
configs/evaluate.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "validate#postprocessing": {
3
+ "_target_": "Compose",
4
+ "transforms": [
5
+ {
6
+ "_target_": "AsDiscreted",
7
+ "keys": [
8
+ "pred",
9
+ "label"
10
+ ],
11
+ "argmax": [
12
+ true,
13
+ false
14
+ ],
15
+ "to_onehot": 2
16
+ }
17
+ ]
18
+ },
19
+ "validate#handlers": [
20
+ {
21
+ "_target_": "CheckpointLoader",
22
+ "load_path": "$@ckpt_dir + '/model.pt'",
23
+ "load_dict": {
24
+ "model": "@network"
25
+ }
26
+ },
27
+ {
28
+ "_target_": "StatsHandler",
29
+ "iteration_log": false
30
+ },
31
+ {
32
+ "_target_": "MetricsSaver",
33
+ "save_dir": "@output_dir",
34
+ "metrics": [
35
+ "val_accu"
36
+ ],
37
+ "metric_details": [
38
+ "val_accu"
39
+ ],
40
+ "batch_transform": "$monai.handlers.from_engine(['image_meta_dict'])",
41
+ "summary_ops": "*"
42
+ }
43
+ ],
44
+ "evaluating": [
45
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
46
+ "$@validate#evaluator.run()"
47
+ ]
48
+ }
configs/inference.json ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import json",
4
+ "$import os",
5
+ "$import torch"
6
+ ],
7
+ "bundle_root": "/workspace/bundle/endoscopic_inbody_classification",
8
+ "output_dir": "$@bundle_root + '/eval'",
9
+ "dataset_dir": "/workspace/data/endoscopic_inbody_classification",
10
+ "test_json": "$@dataset_dir+'/test.json'",
11
+ "test_fp": "$open(@test_json,'r', encoding='utf8')",
12
+ "test_dict": "$json.load(@test_fp)",
13
+ "test_close": "$@test_fp.close()",
14
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
15
+ "network_def": {
16
+ "_target_": "SEResNet50",
17
+ "spatial_dims": 2,
18
+ "in_channels": 3,
19
+ "num_classes": 2
20
+ },
21
+ "network": "$@network_def.to(@device)",
22
+ "preprocessing": {
23
+ "_target_": "Compose",
24
+ "transforms": [
25
+ {
26
+ "_target_": "LoadImaged",
27
+ "keys": "image"
28
+ },
29
+ {
30
+ "_target_": "AsChannelFirstd",
31
+ "keys": "image"
32
+ },
33
+ {
34
+ "_target_": "Resized",
35
+ "keys": "image",
36
+ "spatial_size": [
37
+ 256,
38
+ 256
39
+ ],
40
+ "mode": "bilinear"
41
+ },
42
+ {
43
+ "_target_": "CastToTyped",
44
+ "dtype": "$torch.float32",
45
+ "keys": "image"
46
+ },
47
+ {
48
+ "_target_": "NormalizeIntensityd",
49
+ "nonzero": true,
50
+ "channel_wise": true,
51
+ "keys": "image"
52
+ },
53
+ {
54
+ "_target_": "EnsureTyped",
55
+ "keys": "image"
56
+ }
57
+ ]
58
+ },
59
+ "dataset": {
60
+ "_target_": "Dataset",
61
+ "data": "@test_dict",
62
+ "transform": "@preprocessing"
63
+ },
64
+ "dataloader": {
65
+ "_target_": "DataLoader",
66
+ "dataset": "@dataset",
67
+ "batch_size": 1,
68
+ "shuffle": false,
69
+ "num_workers": 4
70
+ },
71
+ "inferer": {
72
+ "_target_": "SimpleInferer"
73
+ },
74
+ "postprocessing": {
75
+ "_target_": "Compose",
76
+ "transforms": [
77
+ {
78
+ "_target_": "AsDiscreted",
79
+ "argmax": true,
80
+ "to_onehot": 2,
81
+ "keys": [
82
+ "pred"
83
+ ]
84
+ }
85
+ ]
86
+ },
87
+ "handlers": [
88
+ {
89
+ "_target_": "CheckpointLoader",
90
+ "load_path": "$@bundle_root + '/models/model.pt'",
91
+ "load_dict": {
92
+ "model": "@network"
93
+ }
94
+ },
95
+ {
96
+ "_target_": "StatsHandler",
97
+ "iteration_log": true
98
+ }
99
+ ],
100
+ "evaluator": {
101
+ "_target_": "SupervisedEvaluator",
102
+ "device": "@device",
103
+ "val_data_loader": "@dataloader",
104
+ "network": "@network",
105
+ "inferer": "@inferer",
106
+ "postprocessing": "@postprocessing",
107
+ "val_handlers": "@handlers"
108
+ },
109
+ "evaluating": [
110
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
111
+ "$@evaluator.run()"
112
+ ]
113
+ }
configs/logging.conf ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [loggers]
2
+ keys=root
3
+
4
+ [handlers]
5
+ keys=consoleHandler
6
+
7
+ [formatters]
8
+ keys=fullFormatter
9
+
10
+ [logger_root]
11
+ level=INFO
12
+ handlers=consoleHandler
13
+
14
+ [handler_consoleHandler]
15
+ class=StreamHandler
16
+ level=INFO
17
+ formatter=fullFormatter
18
+ args=(sys.stdout,)
19
+
20
+ [formatter_fullFormatter]
21
+ format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
configs/metadata.json ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.2.0",
4
+ "changelog": {
5
+ "0.2.0": "update license files",
6
+ "0.1.0": "complete the first version model package",
7
+ "0.0.1": "initialize the model package structure"
8
+ },
9
+ "monai_version": "1.0.0",
10
+ "pytorch_version": "1.12.0",
11
+ "numpy_version": "1.22.4",
12
+ "optional_packages_version": {
13
+ "nibabel": "4.0.1",
14
+ "pytorch-ignite": "0.4.9"
15
+ },
16
+ "task": "Endoscopic inbody classification classification",
17
+ "description": "A pre-trained binary classification model for endoscopic inbody classification task",
18
+ "authors": "NVIDIA DLMED team",
19
+ "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION",
20
+ "data_source": "private dataset",
21
+ "data_type": "RGB",
22
+ "image_classes": "three channel data, intensity [0-255]",
23
+ "label_classes": "0: inbody, 1: outbody",
24
+ "pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
25
+ "eval_metrics": {
26
+ "accuracy": 0.98
27
+ },
28
+ "references": [
29
+ "J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
30
+ ],
31
+ "network_data_format": {
32
+ "inputs": {
33
+ "image": {
34
+ "type": "magnitude",
35
+ "format": "RGB",
36
+ "modality": "regular",
37
+ "num_channels": 3,
38
+ "spatial_shape": [
39
+ 256,
40
+ 256
41
+ ],
42
+ "dtype": "float32",
43
+ "value_range": [
44
+ 0,
45
+ 1
46
+ ],
47
+ "is_patch_data": false,
48
+ "channel_def": {
49
+ "0": "R",
50
+ "1": "G",
51
+ "2": "B"
52
+ }
53
+ }
54
+ },
55
+ "outputs": {
56
+ "pred": {
57
+ "type": "probabilities",
58
+ "format": "classes",
59
+ "num_channels": 2,
60
+ "spatial_shape": [
61
+ 1,
62
+ 2
63
+ ],
64
+ "dtype": "float32",
65
+ "value_range": [
66
+ 0,
67
+ 1
68
+ ],
69
+ "is_patch_data": false,
70
+ "channel_def": {
71
+ "0": "in body",
72
+ "1": "out body"
73
+ }
74
+ }
75
+ }
76
+ }
77
+ }
configs/multi_gpu_train.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "device": "$torch.device(f'cuda:{dist.get_rank()}')",
3
+ "network": {
4
+ "_target_": "torch.nn.parallel.DistributedDataParallel",
5
+ "module": "$@network_def.to(@device)",
6
+ "device_ids": [
7
+ "@device"
8
+ ]
9
+ },
10
+ "train#sampler": {
11
+ "_target_": "DistributedSampler",
12
+ "dataset": "@train#dataset",
13
+ "even_divisible": true,
14
+ "shuffle": true
15
+ },
16
+ "train#dataloader#sampler": "@train#sampler",
17
+ "train#dataloader#shuffle": false,
18
+ "train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
19
+ "validate#sampler": {
20
+ "_target_": "DistributedSampler",
21
+ "dataset": "@validate#dataset",
22
+ "even_divisible": false,
23
+ "shuffle": false
24
+ },
25
+ "validate#dataloader#sampler": "@validate#sampler",
26
+ "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
+ "training": [
28
+ "$import torch.distributed as dist",
29
+ "$dist.init_process_group(backend='nccl')",
30
+ "$torch.cuda.set_device(@device)",
31
+ "$monai.utils.set_determinism(seed=123)",
32
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
33
+ "$@train#trainer.run()",
34
+ "$dist.destroy_process_group()"
35
+ ]
36
+ }
configs/train.json ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import torch",
4
+ "$import json",
5
+ "$import ignite"
6
+ ],
7
+ "bundle_root": "/workspace/bundle/endoscopic_inbody_classification",
8
+ "ckpt_dir": "$@bundle_root + '/models'",
9
+ "output_dir": "$@bundle_root + '/eval'",
10
+ "dataset_dir": "/workspace/data/endoscopic_inbody_classification",
11
+ "train_json": "$@dataset_dir+'/train.json'",
12
+ "val_json": "$@dataset_dir+'/val.json'",
13
+ "train_fp": "$open(@train_json,'r', encoding='utf8')",
14
+ "train_dict": "$json.load(@train_fp)",
15
+ "train_close": "$@train_fp.close()",
16
+ "val_fp": "$open(@val_json,'r', encoding='utf8')",
17
+ "val_dict": "$json.load(@val_fp)",
18
+ "val_interval": 1,
19
+ "val_close": "$@val_fp.close()",
20
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
21
+ "network_def": {
22
+ "_target_": "SEResNet50",
23
+ "spatial_dims": 2,
24
+ "in_channels": 3,
25
+ "num_classes": 2
26
+ },
27
+ "network": "$@network_def.to(@device)",
28
+ "loss": {
29
+ "_target_": "torch.nn.CrossEntropyLoss",
30
+ "reduction": "sum"
31
+ },
32
+ "optimizer": {
33
+ "_target_": "torch.optim.Adam",
34
+ "params": "$@network.parameters()",
35
+ "lr": 0.001
36
+ },
37
+ "train": {
38
+ "deterministic_transforms": [
39
+ {
40
+ "_target_": "LoadImaged",
41
+ "keys": "image"
42
+ },
43
+ {
44
+ "_target_": "ToTensord",
45
+ "keys": "label"
46
+ },
47
+ {
48
+ "_target_": "AsChannelFirstd",
49
+ "keys": "image"
50
+ },
51
+ {
52
+ "_target_": "Resized",
53
+ "keys": "image",
54
+ "spatial_size": [
55
+ 256,
56
+ 256
57
+ ],
58
+ "mode": "bilinear"
59
+ },
60
+ {
61
+ "_target_": "CastToTyped",
62
+ "dtype": "$torch.float32",
63
+ "keys": "image"
64
+ },
65
+ {
66
+ "_target_": "NormalizeIntensityd",
67
+ "nonzero": true,
68
+ "channel_wise": true,
69
+ "keys": "image"
70
+ },
71
+ {
72
+ "_target_": "EnsureTyped",
73
+ "keys": "image"
74
+ }
75
+ ],
76
+ "random_transforms": [
77
+ {
78
+ "_target_": "RandRotated",
79
+ "range_x": 0.3,
80
+ "prob": 0.2,
81
+ "mode": "bilinear",
82
+ "keys": "image"
83
+ },
84
+ {
85
+ "_target_": "RandScaleIntensityd",
86
+ "factors": 0.3,
87
+ "prob": 0.5,
88
+ "keys": "image"
89
+ },
90
+ {
91
+ "_target_": "RandShiftIntensityd",
92
+ "offsets": 0.1,
93
+ "prob": 0.5,
94
+ "keys": "image"
95
+ },
96
+ {
97
+ "_target_": "RandGaussianNoised",
98
+ "std": 0.01,
99
+ "prob": 0.15,
100
+ "keys": "image"
101
+ },
102
+ {
103
+ "_target_": "RandFlipd",
104
+ "spatial_axis": 0,
105
+ "prob": 0.5,
106
+ "keys": "image"
107
+ },
108
+ {
109
+ "_target_": "RandFlipd",
110
+ "spatial_axis": 1,
111
+ "prob": 0.5,
112
+ "keys": "image"
113
+ }
114
+ ],
115
+ "preprocessing": {
116
+ "_target_": "Compose",
117
+ "transforms": "$@train#deterministic_transforms + @train#random_transforms"
118
+ },
119
+ "dataset": {
120
+ "_target_": "Dataset",
121
+ "data": "@train_dict",
122
+ "transform": "@train#preprocessing"
123
+ },
124
+ "dataloader": {
125
+ "_target_": "DataLoader",
126
+ "dataset": "@train#dataset",
127
+ "batch_size": 64,
128
+ "shuffle": true,
129
+ "num_workers": 4
130
+ },
131
+ "inferer": {
132
+ "_target_": "SimpleInferer"
133
+ },
134
+ "handlers": [
135
+ {
136
+ "_target_": "ValidationHandler",
137
+ "validator": "@validate#evaluator",
138
+ "epoch_level": true,
139
+ "interval": "@val_interval"
140
+ },
141
+ {
142
+ "_target_": "StatsHandler",
143
+ "tag_name": "train_loss",
144
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
145
+ },
146
+ {
147
+ "_target_": "TensorBoardStatsHandler",
148
+ "log_dir": "@output_dir",
149
+ "tag_name": "train_loss",
150
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
151
+ }
152
+ ],
153
+ "key_metric": {
154
+ "train_accu": {
155
+ "_target_": "ignite.metrics.Accuracy",
156
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
157
+ }
158
+ },
159
+ "postprocessing": {
160
+ "_target_": "Compose",
161
+ "transforms": [
162
+ {
163
+ "_target_": "AsDiscreted",
164
+ "argmax": [
165
+ true,
166
+ false
167
+ ],
168
+ "to_onehot": [
169
+ 2,
170
+ 2
171
+ ],
172
+ "keys": [
173
+ "pred",
174
+ "label"
175
+ ]
176
+ }
177
+ ]
178
+ },
179
+ "trainer": {
180
+ "_target_": "SupervisedTrainer",
181
+ "max_epochs": 25,
182
+ "device": "@device",
183
+ "train_data_loader": "@train#dataloader",
184
+ "network": "@network",
185
+ "loss_function": "@loss",
186
+ "optimizer": "@optimizer",
187
+ "inferer": "@train#inferer",
188
+ "postprocessing": "@train#postprocessing",
189
+ "key_train_metric": "@train#key_metric",
190
+ "train_handlers": "@train#handlers"
191
+ }
192
+ },
193
+ "validate": {
194
+ "preprocessing": {
195
+ "_target_": "Compose",
196
+ "transforms": "%train#deterministic_transforms"
197
+ },
198
+ "dataset": {
199
+ "_target_": "Dataset",
200
+ "data": "@val_dict",
201
+ "transform": "@validate#preprocessing"
202
+ },
203
+ "dataloader": {
204
+ "_target_": "DataLoader",
205
+ "dataset": "@validate#dataset",
206
+ "batch_size": 64,
207
+ "shuffle": false,
208
+ "num_workers": 4
209
+ },
210
+ "inferer": {
211
+ "_target_": "SimpleInferer"
212
+ },
213
+ "postprocessing": {
214
+ "_target_": "Compose",
215
+ "transforms": "%train#postprocessing"
216
+ },
217
+ "handlers": [
218
+ {
219
+ "_target_": "StatsHandler",
220
+ "iteration_log": false
221
+ },
222
+ {
223
+ "_target_": "TensorBoardStatsHandler",
224
+ "log_dir": "@output_dir",
225
+ "iteration_log": false
226
+ },
227
+ {
228
+ "_target_": "CheckpointSaver",
229
+ "save_dir": "@ckpt_dir",
230
+ "save_dict": {
231
+ "model": "@network"
232
+ },
233
+ "save_key_metric": true,
234
+ "key_metric_filename": "model.pt"
235
+ }
236
+ ],
237
+ "key_metric": {
238
+ "val_accu": {
239
+ "_target_": "ignite.metrics.Accuracy",
240
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
241
+ }
242
+ },
243
+ "evaluator": {
244
+ "_target_": "SupervisedEvaluator",
245
+ "device": "@device",
246
+ "val_data_loader": "@validate#dataloader",
247
+ "network": "@network",
248
+ "inferer": "@validate#inferer",
249
+ "postprocessing": "@validate#postprocessing",
250
+ "key_val_metric": "@validate#key_metric",
251
+ "val_handlers": "@validate#handlers"
252
+ }
253
+ },
254
+ "training": [
255
+ "$monai.utils.set_determinism(seed=0)",
256
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
257
+ "$@train#trainer.run()"
258
+ ]
259
+ }
docs/data_license.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Datasets used in this work were provided by Activ Surgical.
docs/readme.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Description
2
+ A pre-trained model for the endoscopic inbody classification task.
3
+
4
+ # Model Overview
5
+ This model is trained using the SEResNet50 structure, whose details can be found in [1]. All datasets are from private samples of [Activ Surgical](https://www.activsurgical.com/). Samples in training and validation dataset are from the same 4 videos, while test samples are from different two videos.
6
+ The [pytorch model](https://drive.google.com/file/d/14CS-s1uv2q6WedYQGeFbZeEWIkoyNa-x/view?usp=sharing) and [torchscript model](https://drive.google.com/file/d/1fOoJ4n5DWKHrt9QXTZ2sXwr9C-YvVGCM/view?usp=sharing) are shared in google drive. Modify the "bundle_root" parameter specified in configs/train.json and configs/inference.json to reflect where models are downloaded. Expected directory path to place downloaded models is "models/" under "bundle_root".
7
+
8
+ ## Data
9
+ Datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/). Here is a [link](https://drive.google.com/uc?id=1rQQfHcZFs74OG0uJsL4vg7YqMWXV-s4k) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like. Modify the "dataset_dir" parameter specified in configs/train.json and configs/inference.json to reflect where the data is.
10
+
11
+ The input label json should be a list made up by dicts which includes "image" and "label" keys. An example format is shown below.
12
+
13
+ ```
14
+ [
15
+ {
16
+ "image":"/path/to/image/image_name0.jpg",
17
+ "label": 0
18
+ },
19
+ {
20
+ "image":"/path/to/image/image_name1.jpg",
21
+ "label": 0
22
+ },
23
+ {
24
+ "image":"/path/to/image/image_name2.jpg",
25
+ "label": 1
26
+ },
27
+ ....
28
+ {
29
+ "image":"/path/to/image/image_namek.jpg",
30
+ "label": 0
31
+ },
32
+ ]
33
+ ```
34
+
35
+ ## Training configuration
36
+ The training was performed with an at least 12GB-memory GPU.
37
+
38
+ Actual Model Input: 256 x 256 x 3
39
+
40
+ ## Input and output formats
41
+ Input: 3 channel video frames
42
+
43
+ Output: probability vector whose length equals to 2: Label 0: in body; Label 1: out body
44
+
45
+ ## Scores
46
+ This model achieves the following accuracy score on the test dataset:
47
+
48
+ Accuracy = 0.98
49
+
50
+ ## commands example
51
+ Execute training:
52
+
53
+ ```
54
+ python -m monai.bundle run training \
55
+ --meta_file configs/metadata.json \
56
+ --config_file configs/train.json \
57
+ --logging_file configs/logging.conf
58
+ ```
59
+
60
+ Override the `train` config to execute multi-GPU training:
61
+ ```
62
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training \
63
+ --meta_file configs/metadata.json \
64
+ --config_file "['configs/train.json','configs/multi_gpu_train.json']" \
65
+ --logging_file configs/logging.conf
66
+ ```
67
+
68
+ Override the `train` config to execute evaluation with the trained model:
69
+
70
+ ```
71
+ python -m monai.bundle run evaluating \
72
+ --meta_file configs/metadata.json \
73
+ --config_file "['configs/train.json','configs/evaluate.json']" \
74
+ --logging_file configs/logging.conf
75
+ ```
76
+
77
+ Execute inference:
78
+
79
+ ```
80
+ python -m monai.bundle run evaluating \
81
+ --meta_file configs/metadata.json \
82
+ --config_file configs/inference.json \
83
+ --logging_file configs/logging.conf
84
+ ```
85
+
86
+ Export checkpoint to TorchScript file:
87
+
88
+ ```
89
+ python -m monai.bundle ckpt_export network_def \
90
+ --filepath models/model.ts \
91
+ --ckpt_file models/model.pt \
92
+ --meta_file configs/metadata.json \
93
+ --config_file configs/inference.json
94
+ ```
95
+
96
+ Export checkpoint to onnx file, which has been tested on pytorch 1.12.0:
97
+
98
+ ```
99
+ python scripts/export_to_onnx.py --model models/model.pt --outpath models/model.onnx
100
+ ```
101
+
102
+ Export TensorRT float16 model from the onnx model:
103
+
104
+ ```
105
+ trtexec --onnx=models/model.onnx --saveEngine=models/model.trt --fp16 \
106
+ --minShapes=INPUT__0:1x3x256x256 \
107
+ --optShapes=INPUT__0:16x3x256x256 \
108
+ --maxShapes=INPUT__0:32x3x256x256 \
109
+ --shapes=INPUT__0:8x3x256x256
110
+ ```
111
+ This command need TensorRT with correct CUDA installed in the environment. For the detail of installing TensorRT, please refer to [this link](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html).
112
+
113
+ # References
114
+ [1] J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf
115
+
116
+ # License
117
+ Copyright (c) MONAI Consortium
118
+
119
+ Licensed under the Apache License, Version 2.0 (the "License");
120
+ you may not use this file except in compliance with the License.
121
+ You may obtain a copy of the License at
122
+
123
+ http://www.apache.org/licenses/LICENSE-2.0
124
+
125
+ Unless required by applicable law or agreed to in writing, software
126
+ distributed under the License is distributed on an "AS IS" BASIS,
127
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
128
+ See the License for the specific language governing permissions and
129
+ limitations under the License.
models/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c99b0f2f60b7ceb93fa0ee4e5225aeb1376a109a9993a6327353a370e1c96ca9
3
+ size 104506369
models/model.ts ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65f38a4ad17d48414c6a194a6cda11189535ec6263241d3b21f4c56cac579044
3
+ size 104596723
scripts/export_to_onnx.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ import numpy as np
5
+ import onnx
6
+ import onnxruntime
7
+ import torch
8
+ from monai.networks.nets import SEResNet50
9
+
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+
13
+ def load_model_and_export(modelname, outname, out_channels, height, width, multigpu=False, in_channels=3):
14
+ """
15
+ Loading a model by name.
16
+
17
+ Args:
18
+ modelname: a whole path name of the model that need to be loaded.
19
+ outname: a name for output onnx model.
20
+ out_channels: output channels, which usually equals to 1 + class_number.
21
+ height: input images' height.
22
+ width: input images' width.
23
+ multigpu: if the pre-trained model trained on a multigpu environment.
24
+ in_channels: input images' channel number.
25
+ """
26
+ isopen = os.path.exists(modelname)
27
+ if not isopen:
28
+ raise Exception("The specified model to load does not exist!")
29
+
30
+ model = SEResNet50(spatial_dims=2, in_channels=in_channels, num_classes=out_channels)
31
+
32
+ if multigpu:
33
+ model = torch.nn.DataParallel(model)
34
+ model = model.cuda()
35
+ model.load_state_dict(torch.load(modelname, map_location=device)) # if the model is trained on multi gpu
36
+ model = model.eval()
37
+
38
+ np.random.seed(0)
39
+ x = np.random.random((1, 3, width, height))
40
+ x = torch.tensor(x, dtype=torch.float32)
41
+ x = x.cuda()
42
+ torch_out = model(x)
43
+ input_names = ["INPUT__0"]
44
+ output_names = ["OUTPUT__0"]
45
+ # Export the model
46
+ if multigpu:
47
+ model_trans = model.module
48
+ else:
49
+ model_trans = model
50
+ torch.onnx.export(
51
+ model_trans, # model to save
52
+ x, # model input
53
+ outname, # model save path
54
+ export_params=True,
55
+ verbose=True,
56
+ do_constant_folding=True,
57
+ input_names=input_names,
58
+ output_names=output_names,
59
+ opset_version=15,
60
+ dynamic_axes={"INPUT__0": {0: "batch_size"}, "OUTPUT__0": {0: "batch_size"}},
61
+ )
62
+ onnx_model = onnx.load(outname)
63
+ onnx.checker.check_model(onnx_model, full_check=True)
64
+ ort_session = onnxruntime.InferenceSession(outname)
65
+
66
+ def to_numpy(tensor):
67
+ return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
68
+
69
+ # compute ONNX Runtime output prediction
70
+ ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
71
+ ort_outs = ort_session.run(["OUTPUT__0"], ort_inputs)
72
+ numpy_torch_out = to_numpy(torch_out)
73
+ # compare ONNX Runtime and PyTorch results
74
+ np.testing.assert_allclose(numpy_torch_out, ort_outs[0], rtol=1e-03, atol=1e-05)
75
+ print("Exported model has been tested with ONNXRuntime, and the result looks good!")
76
+
77
+
78
+ if __name__ == "__main__":
79
+ parser = argparse.ArgumentParser()
80
+ # the original model for converting.
81
+ parser.add_argument(
82
+ "--model",
83
+ type=str,
84
+ default=r"/workspace/bundle/endoscopic_inbody_classification/models/model.pt",
85
+ help="Input an existing model weight",
86
+ )
87
+
88
+ # path to save the onnx model.
89
+ parser.add_argument(
90
+ "--outpath",
91
+ type=str,
92
+ default=r"/workspace/bundle/endoscopic_inbody_classification/models/model.onnx",
93
+ help="A path to save the onnx model.",
94
+ )
95
+
96
+ parser.add_argument("--width", type=int, default=256, help="Width for exporting onnx model.")
97
+
98
+ parser.add_argument("--height", type=int, default=256, help="Height for exporting onnx model.")
99
+
100
+ parser.add_argument(
101
+ "--out_channels", type=int, default=2, help="Number of expected out_channels in model for exporting to onnx."
102
+ )
103
+
104
+ parser.add_argument("--multigpu", type=bool, default=False, help="If loading model trained with multi gpu.")
105
+
106
+ args = parser.parse_args()
107
+ modelname = args.model
108
+ outname = args.outpath
109
+ out_channels = args.out_channels
110
+ height = args.height
111
+ width = args.width
112
+ multigpu = args.multigpu
113
+
114
+ if os.path.exists(outname):
115
+ raise Exception(
116
+ "The specified outpath already exists! Change the outpath to avoid overwriting your saved model. "
117
+ )
118
+ model = load_model_and_export(modelname, outname, out_channels, height, width, multigpu)