monai
medical
katielink commited on
Commit
fbd9231
1 Parent(s): b725cb6

update the model weights with the deterministic training

Browse files
README.md CHANGED
@@ -66,13 +66,13 @@ Two Channels
66
  - Label 1: out body
67
 
68
  ## Performance
69
- Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.98
70
 
71
  #### Training Loss
72
- ![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss.png)
73
 
74
  #### Validation Accuracy
75
- ![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
76
 
77
  #### TensorRT speedup
78
  The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
 
66
  - Label 1: out body
67
 
68
  ## Performance
69
+ Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.99
70
 
71
  #### Training Loss
72
+ ![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss_v2.png)
73
 
74
  #### Validation Accuracy
75
+ ![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy_v2.png)
76
 
77
  #### TensorRT speedup
78
  The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
configs/evaluate.json CHANGED
@@ -41,9 +41,6 @@
41
  "summary_ops": "*"
42
  }
43
  ],
44
- "initialize": [
45
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
46
- ],
47
  "run": [
48
  "$@validate#evaluator.run()"
49
  ]
 
41
  "summary_ops": "*"
42
  }
43
  ],
 
 
 
44
  "run": [
45
  "$@validate#evaluator.run()"
46
  ]
configs/inference.json CHANGED
@@ -106,7 +106,7 @@
106
  "val_handlers": "@handlers"
107
  },
108
  "initialize": [
109
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
110
  ],
111
  "run": [
112
  "$@evaluator.run()"
 
106
  "val_handlers": "@handlers"
107
  },
108
  "initialize": [
109
+ "$monai.utils.set_determinism(seed=123)"
110
  ],
111
  "run": [
112
  "$@evaluator.run()"
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.0",
4
  "changelog": {
 
5
  "0.4.0": "add the ONNX-TensorRT way of model conversion",
6
  "0.3.9": "fix mgpu finalize issue",
7
  "0.3.8": "enable deterministic training",
@@ -37,7 +38,7 @@
37
  "label_classes": "0: inbody, 1: outbody",
38
  "pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
39
  "eval_metrics": {
40
- "accuracy": 0.98
41
  },
42
  "references": [
43
  "J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.1",
4
  "changelog": {
5
+ "0.4.1": "update the model weights with the deterministic training",
6
  "0.4.0": "add the ONNX-TensorRT way of model conversion",
7
  "0.3.9": "fix mgpu finalize issue",
8
  "0.3.8": "enable deterministic training",
 
38
  "label_classes": "0: inbody, 1: outbody",
39
  "pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
40
  "eval_metrics": {
41
+ "accuracy": 0.99
42
  },
43
  "references": [
44
  "J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
docs/README.md CHANGED
@@ -59,13 +59,13 @@ Two Channels
59
  - Label 1: out body
60
 
61
  ## Performance
62
- Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.98
63
 
64
  #### Training Loss
65
- ![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss.png)
66
 
67
  #### Validation Accuracy
68
- ![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy.png)
69
 
70
  #### TensorRT speedup
71
  The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
 
59
  - Label 1: out body
60
 
61
  ## Performance
62
+ Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.99
63
 
64
  #### Training Loss
65
+ ![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss_v2.png)
66
 
67
  #### Validation Accuracy
68
+ ![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy_v2.png)
69
 
70
  #### TensorRT speedup
71
  The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c99b0f2f60b7ceb93fa0ee4e5225aeb1376a109a9993a6327353a370e1c96ca9
3
- size 104506369
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc8d874efa195e4416124aad4e1469e0b3ef873753e20948d762e7bfdb37b929
3
+ size 104502013
models/model.ts CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:65f38a4ad17d48414c6a194a6cda11189535ec6263241d3b21f4c56cac579044
3
- size 104596723
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba8c62eca55d37044d6d7631b1b0444709ac9009c202839dc054ca38bf732edf
3
+ size 104609651