update the model weights with the deterministic training
Browse files- README.md +3 -3
- configs/evaluate.json +0 -3
- configs/inference.json +1 -1
- configs/metadata.json +3 -2
- docs/README.md +3 -3
- models/model.pt +2 -2
- models/model.ts +2 -2
README.md
CHANGED
@@ -66,13 +66,13 @@ Two Channels
|
|
66 |
- Label 1: out body
|
67 |
|
68 |
## Performance
|
69 |
-
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.
|
70 |
|
71 |
#### Training Loss
|
72 |
-
![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
73 |
|
74 |
#### Validation Accuracy
|
75 |
-
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
76 |
|
77 |
#### TensorRT speedup
|
78 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
|
|
66 |
- Label 1: out body
|
67 |
|
68 |
## Performance
|
69 |
+
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.99
|
70 |
|
71 |
#### Training Loss
|
72 |
+
![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss_v2.png)
|
73 |
|
74 |
#### Validation Accuracy
|
75 |
+
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy_v2.png)
|
76 |
|
77 |
#### TensorRT speedup
|
78 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
configs/evaluate.json
CHANGED
@@ -41,9 +41,6 @@
|
|
41 |
"summary_ops": "*"
|
42 |
}
|
43 |
],
|
44 |
-
"initialize": [
|
45 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
46 |
-
],
|
47 |
"run": [
|
48 |
"$@validate#evaluator.run()"
|
49 |
]
|
|
|
41 |
"summary_ops": "*"
|
42 |
}
|
43 |
],
|
|
|
|
|
|
|
44 |
"run": [
|
45 |
"$@validate#evaluator.run()"
|
46 |
]
|
configs/inference.json
CHANGED
@@ -106,7 +106,7 @@
|
|
106 |
"val_handlers": "@handlers"
|
107 |
},
|
108 |
"initialize": [
|
109 |
-
"$
|
110 |
],
|
111 |
"run": [
|
112 |
"$@evaluator.run()"
|
|
|
106 |
"val_handlers": "@handlers"
|
107 |
},
|
108 |
"initialize": [
|
109 |
+
"$monai.utils.set_determinism(seed=123)"
|
110 |
],
|
111 |
"run": [
|
112 |
"$@evaluator.run()"
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.4.
|
4 |
"changelog": {
|
|
|
5 |
"0.4.0": "add the ONNX-TensorRT way of model conversion",
|
6 |
"0.3.9": "fix mgpu finalize issue",
|
7 |
"0.3.8": "enable deterministic training",
|
@@ -37,7 +38,7 @@
|
|
37 |
"label_classes": "0: inbody, 1: outbody",
|
38 |
"pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
|
39 |
"eval_metrics": {
|
40 |
-
"accuracy": 0.
|
41 |
},
|
42 |
"references": [
|
43 |
"J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.1",
|
4 |
"changelog": {
|
5 |
+
"0.4.1": "update the model weights with the deterministic training",
|
6 |
"0.4.0": "add the ONNX-TensorRT way of model conversion",
|
7 |
"0.3.9": "fix mgpu finalize issue",
|
8 |
"0.3.8": "enable deterministic training",
|
|
|
38 |
"label_classes": "0: inbody, 1: outbody",
|
39 |
"pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
|
40 |
"eval_metrics": {
|
41 |
+
"accuracy": 0.99
|
42 |
},
|
43 |
"references": [
|
44 |
"J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
|
docs/README.md
CHANGED
@@ -59,13 +59,13 @@ Two Channels
|
|
59 |
- Label 1: out body
|
60 |
|
61 |
## Performance
|
62 |
-
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.
|
63 |
|
64 |
#### Training Loss
|
65 |
-
![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
66 |
|
67 |
#### Validation Accuracy
|
68 |
-
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/
|
69 |
|
70 |
#### TensorRT speedup
|
71 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
|
|
59 |
- Label 1: out body
|
60 |
|
61 |
## Performance
|
62 |
+
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.99
|
63 |
|
64 |
#### Training Loss
|
65 |
+
![A graph showing the training loss over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_train_loss_v2.png)
|
66 |
|
67 |
#### Validation Accuracy
|
68 |
+
![A graph showing the validation accuracy over 25 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_endoscopic_inbody_classification_val_accuracy_v2.png)
|
69 |
|
70 |
#### TensorRT speedup
|
71 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
models/model.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc8d874efa195e4416124aad4e1469e0b3ef873753e20948d762e7bfdb37b929
|
3 |
+
size 104502013
|
models/model.ts
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba8c62eca55d37044d6d7631b1b0444709ac9009c202839dc054ca38bf732edf
|
3 |
+
size 104609651
|