{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.2.0", "changelog": { "0.2.0": "update license files", "0.1.0": "complete the first version model package", "0.0.1": "initialize the model package structure" }, "monai_version": "1.0.0", "pytorch_version": "1.12.0", "numpy_version": "1.22.4", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9" }, "task": "Endoscopic inbody classification classification", "description": "A pre-trained binary classification model for endoscopic inbody classification task", "authors": "NVIDIA DLMED team", "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION", "data_source": "private dataset", "data_type": "RGB", "image_classes": "three channel data, intensity [0-255]", "label_classes": "0: inbody, 1: outbody", "pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body", "eval_metrics": { "accuracy": 0.98 }, "references": [ "J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf" ], "network_data_format": { "inputs": { "image": { "type": "magnitude", "format": "RGB", "modality": "regular", "num_channels": 3, "spatial_shape": [ 256, 256 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "R", "1": "G", "2": "B" } } }, "outputs": { "pred": { "type": "probabilities", "format": "classes", "num_channels": 2, "spatial_shape": [ 1, 2 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "in body", "1": "out body" } } } } }