|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json", |
|
"version": "0.4.3", |
|
"changelog": { |
|
"0.4.3": "README.md fix", |
|
"0.4.2": "add name tag", |
|
"0.4.1": "modify dataset key name", |
|
"0.4.0": "update license files", |
|
"0.3.0": "Update to scripts", |
|
"0.2.0": "Unify naming", |
|
"0.1.0": "Initial version" |
|
}, |
|
"monai_version": "1.0.1", |
|
"pytorch_version": "1.13.0", |
|
"numpy_version": "1.21.2", |
|
"optional_packages_version": {}, |
|
"name": "Valve landmarks regression", |
|
"task": "Given long axis MR images of the heart, identify valve insertion points through the full cardiac cycle", |
|
"description": "This network is used to find where valves attach to heart to help construct 3D FEM models for computation. The output is an array of 10 2D coordinates.", |
|
"authors": "Eric Kerfoot", |
|
"copyright": "Copyright (c) Eric Kerfoot", |
|
"references": [ |
|
"Kerfoot, E, King, CE, Ismail, T, Nordsletten, D & Miller, R 2021, Estimation of Cardiac Valve Annuli Motion with Deep Learning. https://doi.org/10.1007/978-3-030-68107-4_15" |
|
], |
|
"intended_use": "This is suitable for research purposes only", |
|
"image_classes": "Single channel data, intensity scaled to [0, 1]", |
|
"data_source": "Non-public dataset comprised of hand-annotated full cycle long axis MR images", |
|
"coordinate_values": { |
|
"0": 10, |
|
"1": 15, |
|
"2": 20, |
|
"3": 25, |
|
"4": 30, |
|
"5": 35, |
|
"6": 100, |
|
"7": 150, |
|
"8": 200, |
|
"9": 250 |
|
}, |
|
"coordinate_meanings": { |
|
"0": "mitral anterior 2CH", |
|
"1": "mitral posterior 2CH", |
|
"2": "mitral septal 3CH", |
|
"3": "mitral free wall 3CH", |
|
"4": "mitral septal 4CH", |
|
"5": "mitral free wall 4CH", |
|
"6": "aortic septal", |
|
"7": "aortic free wall", |
|
"8": "tricuspid septal", |
|
"9": "tricuspid free wall" |
|
}, |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"modality": "MR", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
256, |
|
256 |
|
], |
|
"dtype": "float32", |
|
"value_range": [], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "tuples", |
|
"format": "points", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
2, |
|
10 |
|
], |
|
"dtype": "float32", |
|
"value_range": [], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "Y Dimension", |
|
"1": "X Dimension" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|