monai
medical
katielink commited on
Commit
4d487dc
1 Parent(s): 72b8d86

Update README Formatting

Browse files
Files changed (3) hide show
  1. README.md +9 -10
  2. configs/metadata.json +2 -1
  3. docs/README.md +9 -10
README.md CHANGED
@@ -6,16 +6,15 @@ library_name: monai
6
  license: apache-2.0
7
  ---
8
  # Model Overview
9
-
10
  Body CT segmentation models are evolving. Starting from abdominal multi-organ segmentation model [1]. Now the community is developing hundreds of target anatomies. In this bundle, we provide re-trained models for (3D) segmentation of 104 whole-body segments.
11
 
12
  This model is trained using the SegResNet [3] network. The model is trained using TotalSegmentator datasets [2].
13
 
14
- ![structures](https://github.com/wasserth/TotalSegmentator/blob/master/resources/imgs/overview_classes.png)
15
 
16
  Figure source from the TotalSegmentator [2].
17
 
18
- ## MONAI Label Showcase
19
 
20
  - We highlight the use of this bundle to use and visualize in MONAI Label + 3D Slicer integration.
21
 
@@ -58,6 +57,8 @@ One channel
58
  - Label 0: Background (everything else)
59
  - label 1-105: Foreground classes (104)
60
 
 
 
61
  ### High-Resolution and Low-Resolution Models
62
 
63
  We retrained two versions of the totalSegmentator models, following the original paper and implementation.
@@ -71,13 +72,11 @@ In MONAI Label use case, users can set the parameter in 3D Slicer plugin to cont
71
  - 1.5 mm model: [Download link](https://drive.google.com/file/d/1PHpFWboimEXmMSe2vBra6T8SaCMC2SHT/view?usp=share_link)
72
  - 3.0 mm model: [Download link](https://drive.google.com/file/d/1c3osYscnr6710ObqZZS8GkZJQlWlc7rt/view?usp=share_link)
73
 
74
- ### Resource Requirements and Latency Benchmarks
75
-
76
  Latencies and memory performance of using the bundle with MONAI Label:
77
 
78
  Tested Image Dimension: **(512, 512, 397)**, the slice thickness is **1.5mm** in this case. After resample to **1.5** isotropic resolution, the dimension is **(287, 287, 397)**
79
 
80
- ## 1.5 mm (highres) model (Single Model with 104 foreground classes)
81
 
82
  Benchmarking on GPU: Memory: **28.73G**
83
 
@@ -87,7 +86,7 @@ Benchmarking on CPU: Memory: **26G**
87
 
88
  - `++ Latencies => Total: 38.3108; Pre: 1.6643; Inferer: 30.3018; Invert: 0.0000; Post: 6.1656; Write: 0.1786`
89
 
90
- ## 3.0 mm (lowres) model (single model with 104 foreground classes)
91
 
92
  GPU: Memory: **5.89G**
93
 
@@ -99,13 +98,13 @@ CPU: Memory: **2.3G**
99
 
100
  ## Performance
101
 
102
- - 1.5 mm Model Training
103
 
104
- - Training Accuracy
105
 
106
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_train_accuracy.png) <br>
107
 
108
- - Validation Dice
109
 
110
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_15mm_validation.png) <br>
111
 
 
6
  license: apache-2.0
7
  ---
8
  # Model Overview
 
9
  Body CT segmentation models are evolving. Starting from abdominal multi-organ segmentation model [1]. Now the community is developing hundreds of target anatomies. In this bundle, we provide re-trained models for (3D) segmentation of 104 whole-body segments.
10
 
11
  This model is trained using the SegResNet [3] network. The model is trained using TotalSegmentator datasets [2].
12
 
13
+ ![structures](https://raw.githubusercontent.com/wasserth/TotalSegmentator/master/resources/imgs/overview_classes.png)
14
 
15
  Figure source from the TotalSegmentator [2].
16
 
17
+ ### MONAI Label Showcase
18
 
19
  - We highlight the use of this bundle to use and visualize in MONAI Label + 3D Slicer integration.
20
 
 
57
  - Label 0: Background (everything else)
58
  - label 1-105: Foreground classes (104)
59
 
60
+ ## Resource Requirements and Latency Benchmarks
61
+
62
  ### High-Resolution and Low-Resolution Models
63
 
64
  We retrained two versions of the totalSegmentator models, following the original paper and implementation.
 
72
  - 1.5 mm model: [Download link](https://drive.google.com/file/d/1PHpFWboimEXmMSe2vBra6T8SaCMC2SHT/view?usp=share_link)
73
  - 3.0 mm model: [Download link](https://drive.google.com/file/d/1c3osYscnr6710ObqZZS8GkZJQlWlc7rt/view?usp=share_link)
74
 
 
 
75
  Latencies and memory performance of using the bundle with MONAI Label:
76
 
77
  Tested Image Dimension: **(512, 512, 397)**, the slice thickness is **1.5mm** in this case. After resample to **1.5** isotropic resolution, the dimension is **(287, 287, 397)**
78
 
79
+ ### 1.5 mm (highres) model (Single Model with 104 foreground classes)
80
 
81
  Benchmarking on GPU: Memory: **28.73G**
82
 
 
86
 
87
  - `++ Latencies => Total: 38.3108; Pre: 1.6643; Inferer: 30.3018; Invert: 0.0000; Post: 6.1656; Write: 0.1786`
88
 
89
+ ### 3.0 mm (lowres) model (single model with 104 foreground classes)
90
 
91
  GPU: Memory: **5.89G**
92
 
 
98
 
99
  ## Performance
100
 
101
+ ### 1.5 mm Model Training
102
 
103
+ #### Training Accuracy
104
 
105
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_train_accuracy.png) <br>
106
 
107
+ #### Validation Dice
108
 
109
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_15mm_validation.png) <br>
110
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.1.3",
4
  "changelog": {
 
5
  "0.1.3": "add non-deterministic note",
6
  "0.1.2": "Update figure with links",
7
  "0.1.1": "adapt to BundleWorkflow interface and val metric",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.1.4",
4
  "changelog": {
5
+ "0.1.4": "Update README Formatting",
6
  "0.1.3": "add non-deterministic note",
7
  "0.1.2": "Update figure with links",
8
  "0.1.1": "adapt to BundleWorkflow interface and val metric",
docs/README.md CHANGED
@@ -1,14 +1,13 @@
1
  # Model Overview
2
-
3
  Body CT segmentation models are evolving. Starting from abdominal multi-organ segmentation model [1]. Now the community is developing hundreds of target anatomies. In this bundle, we provide re-trained models for (3D) segmentation of 104 whole-body segments.
4
 
5
  This model is trained using the SegResNet [3] network. The model is trained using TotalSegmentator datasets [2].
6
 
7
- ![structures](https://github.com/wasserth/TotalSegmentator/blob/master/resources/imgs/overview_classes.png)
8
 
9
  Figure source from the TotalSegmentator [2].
10
 
11
- ## MONAI Label Showcase
12
 
13
  - We highlight the use of this bundle to use and visualize in MONAI Label + 3D Slicer integration.
14
 
@@ -51,6 +50,8 @@ One channel
51
  - Label 0: Background (everything else)
52
  - label 1-105: Foreground classes (104)
53
 
 
 
54
  ### High-Resolution and Low-Resolution Models
55
 
56
  We retrained two versions of the totalSegmentator models, following the original paper and implementation.
@@ -64,13 +65,11 @@ In MONAI Label use case, users can set the parameter in 3D Slicer plugin to cont
64
  - 1.5 mm model: [Download link](https://drive.google.com/file/d/1PHpFWboimEXmMSe2vBra6T8SaCMC2SHT/view?usp=share_link)
65
  - 3.0 mm model: [Download link](https://drive.google.com/file/d/1c3osYscnr6710ObqZZS8GkZJQlWlc7rt/view?usp=share_link)
66
 
67
- ### Resource Requirements and Latency Benchmarks
68
-
69
  Latencies and memory performance of using the bundle with MONAI Label:
70
 
71
  Tested Image Dimension: **(512, 512, 397)**, the slice thickness is **1.5mm** in this case. After resample to **1.5** isotropic resolution, the dimension is **(287, 287, 397)**
72
 
73
- ## 1.5 mm (highres) model (Single Model with 104 foreground classes)
74
 
75
  Benchmarking on GPU: Memory: **28.73G**
76
 
@@ -80,7 +79,7 @@ Benchmarking on CPU: Memory: **26G**
80
 
81
  - `++ Latencies => Total: 38.3108; Pre: 1.6643; Inferer: 30.3018; Invert: 0.0000; Post: 6.1656; Write: 0.1786`
82
 
83
- ## 3.0 mm (lowres) model (single model with 104 foreground classes)
84
 
85
  GPU: Memory: **5.89G**
86
 
@@ -92,13 +91,13 @@ CPU: Memory: **2.3G**
92
 
93
  ## Performance
94
 
95
- - 1.5 mm Model Training
96
 
97
- - Training Accuracy
98
 
99
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_train_accuracy.png) <br>
100
 
101
- - Validation Dice
102
 
103
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_15mm_validation.png) <br>
104
 
 
1
  # Model Overview
 
2
  Body CT segmentation models are evolving. Starting from abdominal multi-organ segmentation model [1]. Now the community is developing hundreds of target anatomies. In this bundle, we provide re-trained models for (3D) segmentation of 104 whole-body segments.
3
 
4
  This model is trained using the SegResNet [3] network. The model is trained using TotalSegmentator datasets [2].
5
 
6
+ ![structures](https://raw.githubusercontent.com/wasserth/TotalSegmentator/master/resources/imgs/overview_classes.png)
7
 
8
  Figure source from the TotalSegmentator [2].
9
 
10
+ ### MONAI Label Showcase
11
 
12
  - We highlight the use of this bundle to use and visualize in MONAI Label + 3D Slicer integration.
13
 
 
50
  - Label 0: Background (everything else)
51
  - label 1-105: Foreground classes (104)
52
 
53
+ ## Resource Requirements and Latency Benchmarks
54
+
55
  ### High-Resolution and Low-Resolution Models
56
 
57
  We retrained two versions of the totalSegmentator models, following the original paper and implementation.
 
65
  - 1.5 mm model: [Download link](https://drive.google.com/file/d/1PHpFWboimEXmMSe2vBra6T8SaCMC2SHT/view?usp=share_link)
66
  - 3.0 mm model: [Download link](https://drive.google.com/file/d/1c3osYscnr6710ObqZZS8GkZJQlWlc7rt/view?usp=share_link)
67
 
 
 
68
  Latencies and memory performance of using the bundle with MONAI Label:
69
 
70
  Tested Image Dimension: **(512, 512, 397)**, the slice thickness is **1.5mm** in this case. After resample to **1.5** isotropic resolution, the dimension is **(287, 287, 397)**
71
 
72
+ ### 1.5 mm (highres) model (Single Model with 104 foreground classes)
73
 
74
  Benchmarking on GPU: Memory: **28.73G**
75
 
 
79
 
80
  - `++ Latencies => Total: 38.3108; Pre: 1.6643; Inferer: 30.3018; Invert: 0.0000; Post: 6.1656; Write: 0.1786`
81
 
82
+ ### 3.0 mm (lowres) model (single model with 104 foreground classes)
83
 
84
  GPU: Memory: **5.89G**
85
 
 
91
 
92
  ## Performance
93
 
94
+ ### 1.5 mm Model Training
95
 
96
+ #### Training Accuracy
97
 
98
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_train_accuracy.png) <br>
99
 
100
+ #### Validation Dice
101
 
102
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_15mm_validation.png) <br>
103