PEFT
code
instruct
llama2
File size: 1,528 Bytes
4390f4c
c4a1d81
a35dad5
 
 
 
c4a1d81
0f60e61
f83c306
a35dad5
4390f4c
 
a35dad5
4390f4c
f83c306
c4a1d81
d67c2dd
4390f4c
a35dad5
 
d67c2dd
a42fc92
a35dad5
 
 
 
 
 
 
 
 
 
 
 
 
f83c306
a35dad5
e843c58
a35dad5
02806bf
 
a35dad5
e843c58
a35dad5
e843c58
a35dad5
e843c58
a35dad5
e843c58
a35dad5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: peft
tags:
- code
- instruct
- llama2
datasets: 
- HuggingFaceH4/no_robots  
base_model: meta-llama/Llama-2-7b-hf
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** meta-llama/Llama-2-7b-hf

**Dataset:** HuggingFaceH4/no_robots  

#### Dataset Insights:

[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 39mins 4secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.313` for the entire epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Cost Per Epoch:** $1.313
- **Total Finetuning Cost:** $1.313
- **Model Path:** meta-llama/Llama-2-7b-hf
- **Learning Rate:** 0.0002
- **Data Split:** 100% train
- **Gradient Accumulation Steps:** 4
- **lora r:** 32
- **lora alpha:** 64

#### Prompt Structure
```
<|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
```
#### Train loss :

![eval loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/_UwicIoHhj1RrMjt_63vQ.png)

license: apache-2.0