---
license: apache-2.0
---
# Mocha Checkpoint for BLIP-Large Model
The official checkpoint of BLIP-Large model, finetuned on MS-COCO with the MOCHa RL frameword, introduced in [MOCHa: Multi-Objective Reinforcement Mitigating Caption Hallucinations](https://arxiv.org/pdf/2312.03631.pdf)
[Project Page](https://assafbk.github.io/mocha/)
## Usage
You can use this model for conditional and un-conditional image captioning
### Using the Pytorch model
#### Running the model on CPU
Click to expand
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
#### Running the model on GPU
##### In full precision
Click to expand
```python
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
##### In half precision (`float16`)
Click to expand
```python
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha", torch_dtype=torch.float16).to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# >>> a photography of a woman and her dog
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
>>> a woman sitting on the beach with her dog
```
bibtex:
```
@misc{benkish2023mocha,
title={MOCHa: Multi-Objective Reinforcement Mitigating Caption Hallucinations},
author={Assaf Ben-Kish and Moran Yanuka and Morris Alper and Raja Giryes and Hadar Averbuch-Elor},
year={2023},
eprint={2312.03631},
archivePrefix={arXiv},
primaryClass={cs.CV}
}