---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_file: price-prediction-model.bin
widget:
structuredData:
x0:
- 0.0
- 1.0
- 0.0
x1:
- 1.0
- 0.0
- 1.0
x10:
- 10.0
- 8.0
- 5.0
x2:
- 1.0
- 1.0
- 1.0
x3:
- 0.0
- 0.0
- 0.0
x4:
- 3300.0
- 2350.0
- 2200.0
x5:
- 8.0
- 16.0
- 8.0
x6:
- 918.0
- 239.57
- 68.59
x7:
- 8.0
- 4.0
- 4.0
x8:
- 2020.0
- 2014.0
- 2015.0
x9:
- 15.42
- 12.7
- 10.29
---
# Model description
This model is a regression model that predicts the price of a used phones
## Intended uses & limitations
Ellipsis
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|------------------|------------|
| alpha | 0.0001 |
| copy_X | True |
| fit_intercept | True |
| max_iter | |
| normalize | deprecated |
| positive | False |
| random_state | |
| solver | auto |
| tol | 0.001 |
Ridge(alpha=0.0001)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Ridge(alpha=0.0001)