LLM-foundry update October 17, 2023 21:18:11
Browse files- adapt_tokenizer.py +4 -5
- attention.py +131 -93
- blocks.py +20 -20
- configuration_mpt.py +32 -10
- custom_embedding.py +0 -1
- fc.py +7 -0
- ffn.py +39 -0
- hf_prefixlm_converter.py +16 -11
- meta_init_context.py +17 -12
- modeling_mpt.py +55 -51
- norm.py +10 -9
- param_init_fns.py +49 -51
adapt_tokenizer.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
from typing import
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
-
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
4 |
NUM_SENTINEL_TOKENS: int = 100
|
5 |
|
6 |
-
def adapt_tokenizer_for_denoising(tokenizer:
|
7 |
"""Adds sentinel tokens and padding token (if missing).
|
8 |
|
9 |
Expands the tokenizer vocabulary to include sentinel tokens
|
@@ -34,7 +33,7 @@ class AutoTokenizerForMOD(AutoTokenizer):
|
|
34 |
"""
|
35 |
|
36 |
@classmethod
|
37 |
-
def from_pretrained(cls, *args, **kwargs):
|
38 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
39 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
40 |
adapt_tokenizer_for_denoising(tokenizer)
|
|
|
1 |
+
from typing import Any
|
2 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
3 |
NUM_SENTINEL_TOKENS: int = 100
|
4 |
|
5 |
+
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
|
6 |
"""Adds sentinel tokens and padding token (if missing).
|
7 |
|
8 |
Expands the tokenizer vocabulary to include sentinel tokens
|
|
|
33 |
"""
|
34 |
|
35 |
@classmethod
|
36 |
+
def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
|
37 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
38 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
39 |
adapt_tokenizer_for_denoising(tokenizer)
|
attention.py
CHANGED
@@ -1,15 +1,30 @@
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
-
from typing import Optional
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
10 |
-
from .
|
|
|
11 |
|
12 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
14 |
if num_query_tokens != 1:
|
15 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
@@ -17,9 +32,27 @@ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_cau
|
|
17 |
return False
|
18 |
return original_is_causal
|
19 |
|
20 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
22 |
-
kv_n_heads = 1 if multiquery else n_heads
|
23 |
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
24 |
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
25 |
if past_key_value is not None:
|
@@ -29,6 +62,9 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_
|
|
29 |
past_key_value = (k, v)
|
30 |
(b, _, s_q, d) = q.shape
|
31 |
s_k = k.size(-1)
|
|
|
|
|
|
|
32 |
if softmax_scale is None:
|
33 |
softmax_scale = 1 / math.sqrt(d)
|
34 |
attn_weight = q.matmul(k) * softmax_scale
|
@@ -42,11 +78,11 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_
|
|
42 |
min_val = torch.finfo(q.dtype).min
|
43 |
if key_padding_mask is not None:
|
44 |
if attn_bias is not None:
|
45 |
-
warnings.warn('
|
46 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
47 |
if is_causal and (not q.size(2) == 1):
|
48 |
s = max(s_q, s_k)
|
49 |
-
causal_mask = attn_weight.new_ones(s, s, dtype=torch.
|
50 |
causal_mask = causal_mask.tril()
|
51 |
causal_mask = causal_mask.to(torch.bool)
|
52 |
causal_mask = ~causal_mask
|
@@ -61,19 +97,27 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_
|
|
61 |
return (out, attn_weight, past_key_value)
|
62 |
return (out, None, past_key_value)
|
63 |
|
64 |
-
def check_valid_inputs(*tensors
|
|
|
|
|
65 |
for tensor in tensors:
|
66 |
if tensor.dtype not in valid_dtypes:
|
67 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
68 |
if not tensor.is_cuda:
|
69 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
70 |
|
71 |
-
def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
72 |
try:
|
73 |
from flash_attn import bert_padding, flash_attn_interface
|
74 |
except:
|
75 |
-
raise RuntimeError('Please install flash-attn==1.0.3.
|
76 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if past_key_value is not None:
|
78 |
if len(past_key_value) != 0:
|
79 |
key = torch.cat([past_key_value[0], key], dim=1)
|
@@ -92,19 +136,27 @@ def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale
|
|
92 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
93 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
94 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
95 |
-
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=
|
96 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
97 |
-
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=
|
98 |
-
if
|
99 |
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
100 |
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
|
|
|
|
|
|
101 |
dropout_p = dropout_p if training else 0.0
|
102 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
105 |
return (output, None, past_key_value)
|
106 |
|
107 |
-
def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
108 |
try:
|
109 |
from .flash_attn_triton import flash_attn_func
|
110 |
except:
|
@@ -116,8 +168,14 @@ def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softma
|
|
116 |
except:
|
117 |
_installed = False
|
118 |
if not _installed:
|
119 |
-
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
120 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
if past_key_value is not None:
|
122 |
if len(past_key_value) != 0:
|
123 |
key = torch.cat([past_key_value[0], key], dim=1)
|
@@ -129,6 +187,7 @@ def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softma
|
|
129 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
130 |
if dropout_p:
|
131 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
|
|
132 |
if needs_weights:
|
133 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
134 |
if key_padding_mask is not None:
|
@@ -138,124 +197,103 @@ def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softma
|
|
138 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
139 |
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
140 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
141 |
-
key = rearrange(key, 'b s (h d) -> b s h d', h=
|
142 |
-
value = rearrange(value, 'b s (h d) -> b s h d', h=
|
143 |
-
if
|
144 |
-
key = key.
|
145 |
-
value = value.
|
|
|
|
|
|
|
146 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
147 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
148 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
149 |
return (output, None, past_key_value)
|
150 |
|
151 |
-
class
|
152 |
-
"""Multi-head
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
156 |
"""
|
157 |
|
158 |
-
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0,
|
159 |
super().__init__()
|
160 |
self.attn_impl = attn_impl
|
161 |
self.clip_qkv = clip_qkv
|
162 |
self.qk_ln = qk_ln
|
163 |
self.d_model = d_model
|
164 |
self.n_heads = n_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
self.softmax_scale = softmax_scale
|
166 |
if self.softmax_scale is None:
|
167 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
168 |
self.attn_dropout_p = attn_pdrop
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
self.Wqkv._fused = (0, fuse_splits)
|
172 |
if self.qk_ln:
|
173 |
-
|
174 |
-
self.q_ln =
|
175 |
-
self.k_ln =
|
176 |
if self.attn_impl == 'flash':
|
177 |
self.attn_fn = flash_attn_fn
|
178 |
elif self.attn_impl == 'triton':
|
179 |
self.attn_fn = triton_flash_attn_fn
|
180 |
-
if verbose:
|
181 |
-
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
182 |
elif self.attn_impl == 'torch':
|
183 |
self.attn_fn = scaled_multihead_dot_product_attention
|
184 |
-
if torch.cuda.is_available() and verbose:
|
185 |
-
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
186 |
else:
|
187 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
188 |
-
self.out_proj =
|
189 |
self.out_proj._is_residual = True
|
190 |
|
191 |
-
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
192 |
qkv = self.Wqkv(x)
|
193 |
if self.clip_qkv:
|
194 |
-
qkv.
|
195 |
-
(query, key, value) = qkv.
|
196 |
key_padding_mask = attention_mask
|
197 |
if self.qk_ln:
|
198 |
dtype = query.dtype
|
199 |
query = self.q_ln(query).to(dtype)
|
200 |
key = self.k_ln(key).to(dtype)
|
201 |
-
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
202 |
return (self.out_proj(context), attn_weights, past_key_value)
|
203 |
|
204 |
-
class
|
205 |
-
"""Multi-
|
206 |
|
207 |
-
Using torch or triton attention
|
208 |
additive bias.
|
209 |
"""
|
210 |
|
211 |
-
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0,
|
212 |
-
super().__init__()
|
213 |
-
self.attn_impl = attn_impl
|
214 |
-
self.clip_qkv = clip_qkv
|
215 |
-
self.qk_ln = qk_ln
|
216 |
-
self.d_model = d_model
|
217 |
-
self.n_heads = n_heads
|
218 |
-
self.head_dim = d_model // n_heads
|
219 |
-
self.softmax_scale = softmax_scale
|
220 |
-
if self.softmax_scale is None:
|
221 |
-
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
222 |
-
self.attn_dropout_p = attn_pdrop
|
223 |
-
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
224 |
-
fuse_splits = (d_model, d_model + self.head_dim)
|
225 |
-
self.Wqkv._fused = (0, fuse_splits)
|
226 |
-
if self.qk_ln:
|
227 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
228 |
-
self.q_ln = layernorm_class(d_model, device=device)
|
229 |
-
self.k_ln = layernorm_class(self.head_dim, device=device)
|
230 |
-
if self.attn_impl == 'flash':
|
231 |
-
self.attn_fn = flash_attn_fn
|
232 |
-
elif self.attn_impl == 'triton':
|
233 |
-
self.attn_fn = triton_flash_attn_fn
|
234 |
-
if verbose:
|
235 |
-
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
236 |
-
elif self.attn_impl == 'torch':
|
237 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
238 |
-
if torch.cuda.is_available() and verbose:
|
239 |
-
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
240 |
-
else:
|
241 |
-
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
242 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
243 |
-
self.out_proj._is_residual = True
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
key = self.k_ln(key).to(dtype)
|
255 |
-
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
256 |
-
return (self.out_proj(context), attn_weights, past_key_value)
|
257 |
|
258 |
-
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
259 |
if attn_impl == 'flash':
|
260 |
return None
|
261 |
elif attn_impl in ['torch', 'triton']:
|
@@ -269,7 +307,7 @@ def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_s
|
|
269 |
else:
|
270 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
271 |
|
272 |
-
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
273 |
if attn_impl == 'flash':
|
274 |
return None
|
275 |
elif attn_impl in ['torch', 'triton']:
|
@@ -280,7 +318,7 @@ def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=
|
|
280 |
else:
|
281 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
282 |
|
283 |
-
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
284 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
285 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
286 |
m = m.mul(alibi_bias_max / _n_heads)
|
@@ -289,7 +327,7 @@ def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
|
289 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
290 |
return slopes.view(1, n_heads, 1, 1)
|
291 |
|
292 |
-
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
293 |
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
294 |
if full:
|
295 |
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
@@ -297,4 +335,4 @@ def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None
|
|
297 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
298 |
alibi_bias = alibi_bias * slopes
|
299 |
return alibi_bias.to(dtype=dtype)
|
300 |
-
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
+
from typing import Any, List, Optional, Tuple
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
10 |
+
from .fc import FC_CLASS_REGISTRY
|
11 |
+
from .norm import NORM_CLASS_REGISTRY
|
12 |
|
13 |
+
def is_flash_v2_installed():
|
14 |
+
try:
|
15 |
+
import flash_attn as flash_attn
|
16 |
+
except:
|
17 |
+
return False
|
18 |
+
return version.parse(flash_attn.__version__) >= version.parse('2.0.0')
|
19 |
+
|
20 |
+
def is_flash_v1_installed():
|
21 |
+
try:
|
22 |
+
import flash_attn as flash_attn
|
23 |
+
except:
|
24 |
+
return False
|
25 |
+
return version.parse(flash_attn.__version__) < version.parse('2.0.0')
|
26 |
+
|
27 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
|
28 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
29 |
if num_query_tokens != 1:
|
30 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
|
|
32 |
return False
|
33 |
return original_is_causal
|
34 |
|
35 |
+
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
36 |
+
"""Perform repeat of kv heads along a particular dimension.
|
37 |
+
|
38 |
+
hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
|
39 |
+
n_rep: amount of repetitions of kv_n_heads
|
40 |
+
Unlike torch.repeat_interleave, this function avoids allocating new memory.
|
41 |
+
"""
|
42 |
+
if n_rep == 1:
|
43 |
+
return hidden
|
44 |
+
(b, s, kv_n_heads, d) = hidden.shape
|
45 |
+
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
|
46 |
+
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
|
47 |
+
|
48 |
+
def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
49 |
+
if multiquery:
|
50 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
51 |
+
kv_n_heads = 1
|
52 |
+
elif kv_n_heads is None:
|
53 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
54 |
+
kv_n_heads = n_heads
|
55 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
|
|
56 |
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
57 |
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
58 |
if past_key_value is not None:
|
|
|
62 |
past_key_value = (k, v)
|
63 |
(b, _, s_q, d) = q.shape
|
64 |
s_k = k.size(-1)
|
65 |
+
if kv_n_heads > 1 and kv_n_heads < n_heads:
|
66 |
+
k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
67 |
+
v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
68 |
if softmax_scale is None:
|
69 |
softmax_scale = 1 / math.sqrt(d)
|
70 |
attn_weight = q.matmul(k) * softmax_scale
|
|
|
78 |
min_val = torch.finfo(q.dtype).min
|
79 |
if key_padding_mask is not None:
|
80 |
if attn_bias is not None:
|
81 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
82 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
83 |
if is_causal and (not q.size(2) == 1):
|
84 |
s = max(s_q, s_k)
|
85 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
|
86 |
causal_mask = causal_mask.tril()
|
87 |
causal_mask = causal_mask.to(torch.bool)
|
88 |
causal_mask = ~causal_mask
|
|
|
97 |
return (out, attn_weight, past_key_value)
|
98 |
return (out, None, past_key_value)
|
99 |
|
100 |
+
def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch.dtype]]=None):
|
101 |
+
if valid_dtypes is None:
|
102 |
+
valid_dtypes = [torch.float16, torch.bfloat16]
|
103 |
for tensor in tensors:
|
104 |
if tensor.dtype not in valid_dtypes:
|
105 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
106 |
if not tensor.is_cuda:
|
107 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
108 |
|
109 |
+
def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
110 |
try:
|
111 |
from flash_attn import bert_padding, flash_attn_interface
|
112 |
except:
|
113 |
+
raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.2')
|
114 |
check_valid_inputs(query, key, value)
|
115 |
+
if multiquery:
|
116 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
117 |
+
kv_n_heads = 1
|
118 |
+
elif kv_n_heads is None:
|
119 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
120 |
+
kv_n_heads = n_heads
|
121 |
if past_key_value is not None:
|
122 |
if len(past_key_value) != 0:
|
123 |
key = torch.cat([past_key_value[0], key], dim=1)
|
|
|
136 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
137 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
138 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
139 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
140 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
141 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
142 |
+
if kv_n_heads == 1:
|
143 |
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
144 |
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
145 |
+
elif kv_n_heads < n_heads:
|
146 |
+
key_unpad = repeat_kv_for_gqa(key_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
|
147 |
+
value_unpad = repeat_kv_for_gqa(value_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
|
148 |
dropout_p = dropout_p if training else 0.0
|
149 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
150 |
+
if is_flash_v1_installed():
|
151 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
152 |
+
elif is_flash_v2_installed():
|
153 |
+
output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
154 |
+
else:
|
155 |
+
raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.3.2 is required.')
|
156 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
157 |
return (output, None, past_key_value)
|
158 |
|
159 |
+
def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
160 |
try:
|
161 |
from .flash_attn_triton import flash_attn_func
|
162 |
except:
|
|
|
168 |
except:
|
169 |
_installed = False
|
170 |
if not _installed:
|
171 |
+
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
|
172 |
check_valid_inputs(query, key, value)
|
173 |
+
if multiquery:
|
174 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
175 |
+
kv_n_heads = 1
|
176 |
+
elif kv_n_heads is None:
|
177 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
178 |
+
kv_n_heads = n_heads
|
179 |
if past_key_value is not None:
|
180 |
if len(past_key_value) != 0:
|
181 |
key = torch.cat([past_key_value[0], key], dim=1)
|
|
|
187 |
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
188 |
if dropout_p:
|
189 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
190 |
+
dropout_p = dropout_p if training else 0.0
|
191 |
if needs_weights:
|
192 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
193 |
if key_padding_mask is not None:
|
|
|
197 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
198 |
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
199 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
200 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
|
201 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
|
202 |
+
if kv_n_heads == 1:
|
203 |
+
key = key.repeat(1, 1, n_heads, 1)
|
204 |
+
value = value.repeat(1, 1, n_heads, 1)
|
205 |
+
elif kv_n_heads < n_heads:
|
206 |
+
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
|
207 |
+
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
|
208 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
209 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
210 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
211 |
return (output, None, past_key_value)
|
212 |
|
213 |
+
class GroupedQueryAttention(nn.Module):
|
214 |
+
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
|
215 |
|
216 |
+
and Multi-query attention (MQA).
|
217 |
+
|
218 |
+
This allows the user to set a variable of number of kv_n_heads, rather than
|
219 |
+
just n_heads or 1, as in MHA and MQA. Using torch or triton attention
|
220 |
+
implementation enables user to also use additive bias.
|
221 |
"""
|
222 |
|
223 |
+
def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
224 |
super().__init__()
|
225 |
self.attn_impl = attn_impl
|
226 |
self.clip_qkv = clip_qkv
|
227 |
self.qk_ln = qk_ln
|
228 |
self.d_model = d_model
|
229 |
self.n_heads = n_heads
|
230 |
+
self.kv_n_heads = kv_n_heads
|
231 |
+
self.head_dim = d_model // n_heads
|
232 |
+
if self.kv_n_heads <= 0:
|
233 |
+
raise ValueError('kv_n_heads should be greater than zero.')
|
234 |
+
if self.kv_n_heads > self.n_heads:
|
235 |
+
raise ValueError('The number of KV heads should be less than or equal to Q heads.')
|
236 |
+
if self.n_heads % self.kv_n_heads != 0:
|
237 |
+
raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
|
238 |
self.softmax_scale = softmax_scale
|
239 |
if self.softmax_scale is None:
|
240 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
241 |
self.attn_dropout_p = attn_pdrop
|
242 |
+
fc_kwargs: dict[str, Any] = {'bias': bias}
|
243 |
+
if fc_type != 'te':
|
244 |
+
fc_kwargs['device'] = device
|
245 |
+
self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
|
246 |
+
fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
|
247 |
self.Wqkv._fused = (0, fuse_splits)
|
248 |
if self.qk_ln:
|
249 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
250 |
+
self.q_ln = norm_class(self.d_model, device=device)
|
251 |
+
self.k_ln = norm_class(self.kv_n_heads * self.head_dim, device=device)
|
252 |
if self.attn_impl == 'flash':
|
253 |
self.attn_fn = flash_attn_fn
|
254 |
elif self.attn_impl == 'triton':
|
255 |
self.attn_fn = triton_flash_attn_fn
|
|
|
|
|
256 |
elif self.attn_impl == 'torch':
|
257 |
self.attn_fn = scaled_multihead_dot_product_attention
|
|
|
|
|
258 |
else:
|
259 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
260 |
+
self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
|
261 |
self.out_proj._is_residual = True
|
262 |
|
263 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, is_causal: bool=True, needs_weights: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
264 |
qkv = self.Wqkv(x)
|
265 |
if self.clip_qkv:
|
266 |
+
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
267 |
+
(query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
|
268 |
key_padding_mask = attention_mask
|
269 |
if self.qk_ln:
|
270 |
dtype = query.dtype
|
271 |
query = self.q_ln(query).to(dtype)
|
272 |
key = self.k_ln(key).to(dtype)
|
273 |
+
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
274 |
return (self.out_proj(context), attn_weights, past_key_value)
|
275 |
|
276 |
+
class MultiheadAttention(GroupedQueryAttention):
|
277 |
+
"""Multi-head self attention.
|
278 |
|
279 |
+
Using torch or triton attention implementation enables user to also use
|
280 |
additive bias.
|
281 |
"""
|
282 |
|
283 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
284 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
class MultiQueryAttention(GroupedQueryAttention):
|
287 |
+
"""Multi-Query self attention.
|
288 |
+
|
289 |
+
Using torch or triton attention implementation enables user to also use
|
290 |
+
additive bias.
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
294 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
|
|
|
|
|
|
|
295 |
|
296 |
+
def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[Tuple[int, int, int, int]]:
|
297 |
if attn_impl == 'flash':
|
298 |
return None
|
299 |
elif attn_impl in ['torch', 'triton']:
|
|
|
307 |
else:
|
308 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
309 |
|
310 |
+
def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
|
311 |
if attn_impl == 'flash':
|
312 |
return None
|
313 |
elif attn_impl in ['torch', 'triton']:
|
|
|
318 |
else:
|
319 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
320 |
|
321 |
+
def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor:
|
322 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
323 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
324 |
m = m.mul(alibi_bias_max / _n_heads)
|
|
|
327 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
328 |
return slopes.view(1, n_heads, 1, 1)
|
329 |
|
330 |
+
def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
|
331 |
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
332 |
if full:
|
333 |
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
|
|
335 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
336 |
alibi_bias = alibi_bias * slopes
|
337 |
return alibi_bias.to(dtype=dtype)
|
338 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
|
blocks.py
CHANGED
@@ -1,41 +1,41 @@
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
-
from typing import Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from .attention import ATTN_CLASS_REGISTRY
|
|
|
6 |
from .norm import NORM_CLASS_REGISTRY
|
7 |
|
8 |
-
class MPTMLP(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
11 |
-
super().__init__()
|
12 |
-
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
13 |
-
self.act = nn.GELU(approximate='none')
|
14 |
-
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
15 |
-
self.down_proj._is_residual = True
|
16 |
-
|
17 |
-
def forward(self, x):
|
18 |
-
return self.down_proj(self.act(self.up_proj(x)))
|
19 |
-
|
20 |
class MPTBlock(nn.Module):
|
21 |
|
22 |
-
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict=
|
|
|
|
|
|
|
|
|
23 |
del kwargs
|
24 |
super().__init__()
|
25 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
|
|
26 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
|
|
|
|
27 |
self.norm_1 = norm_class(d_model, device=device)
|
28 |
-
self.attn = attn_class(
|
29 |
-
self.norm_2 =
|
30 |
-
|
|
|
|
|
31 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
32 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
33 |
|
34 |
-
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
35 |
a = self.norm_1(x)
|
36 |
-
(b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
37 |
x = x + self.resid_attn_dropout(b)
|
38 |
-
m =
|
|
|
|
|
39 |
n = self.ffn(m)
|
40 |
x = x + self.resid_ffn_dropout(n)
|
41 |
return (x, attn_weights, past_key_value)
|
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Any, Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from .attention import ATTN_CLASS_REGISTRY
|
6 |
+
from .ffn import FFN_CLASS_REGISTRY, build_ffn
|
7 |
from .norm import NORM_CLASS_REGISTRY
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class MPTBlock(nn.Module):
|
10 |
|
11 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, **kwargs: Any):
|
12 |
+
if attn_config is None:
|
13 |
+
attn_config = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
14 |
+
if ffn_config is None:
|
15 |
+
ffn_config = {'ffn_type': 'mptmlp'}
|
16 |
del kwargs
|
17 |
super().__init__()
|
18 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
19 |
+
assert isinstance(attn_config['attn_type'], str)
|
20 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
21 |
+
args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max'}
|
22 |
+
attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
|
23 |
self.norm_1 = norm_class(d_model, device=device)
|
24 |
+
self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
|
25 |
+
self.norm_2 = None
|
26 |
+
if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
|
27 |
+
self.norm_2 = norm_class(d_model, device=device)
|
28 |
+
self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
|
29 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
30 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
31 |
|
32 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
33 |
a = self.norm_1(x)
|
34 |
+
(b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions)
|
35 |
x = x + self.resid_attn_dropout(b)
|
36 |
+
m = x
|
37 |
+
if self.norm_2 is not None:
|
38 |
+
m = self.norm_2(x)
|
39 |
n = self.ffn(m)
|
40 |
x = x + self.resid_ffn_dropout(n)
|
41 |
return (x, attn_weights, past_key_value)
|
configuration_mpt.py
CHANGED
@@ -1,27 +1,29 @@
|
|
1 |
"""A HuggingFace-style model configuration."""
|
2 |
-
|
|
|
3 |
from transformers import PretrainedConfig
|
4 |
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
|
|
5 |
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
6 |
|
7 |
class MPTConfig(PretrainedConfig):
|
8 |
model_type = 'mpt'
|
9 |
|
10 |
-
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False,
|
11 |
"""The MPT configuration class.
|
12 |
|
13 |
Args:
|
14 |
d_model (int): The size of the embedding dimension of the model.
|
15 |
n_heads (int): The number of attention heads.
|
16 |
n_layers (int): The number of layers in the model.
|
17 |
-
expansion_ratio (int): The ratio of the up/down scale in the
|
18 |
max_seq_len (int): The maximum sequence length of the model.
|
19 |
vocab_size (int): The size of the vocabulary.
|
20 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
21 |
emb_pdrop (float): The dropout probability for the embedding layer.
|
22 |
learned_pos_emb (bool): Whether to use learned positional embeddings
|
23 |
-
attn_config (Dict):
|
24 |
-
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
25 |
attn_pdrop (float): The dropout probability for the attention layers.
|
26 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
27 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
@@ -38,13 +40,15 @@ class MPTConfig(PretrainedConfig):
|
|
38 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
39 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
40 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
|
|
|
|
|
|
41 |
init_device (str): The device to use for parameter initialization.
|
42 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
43 |
no_bias (bool): Whether to use bias in all layers.
|
44 |
verbose (int): The verbosity level. 0 is silent.
|
45 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
46 |
norm_type (str): choose type of norm to use
|
47 |
-
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
48 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
49 |
init_config (Dict): A dictionary used to configure the model initialization:
|
50 |
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
@@ -61,6 +65,7 @@ class MPTConfig(PretrainedConfig):
|
|
61 |
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
62 |
---
|
63 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
|
|
64 |
"""
|
65 |
self.d_model = d_model
|
66 |
self.n_heads = n_heads
|
@@ -72,29 +77,36 @@ class MPTConfig(PretrainedConfig):
|
|
72 |
self.emb_pdrop = emb_pdrop
|
73 |
self.learned_pos_emb = learned_pos_emb
|
74 |
self.attn_config = attn_config
|
|
|
75 |
self.init_device = init_device
|
76 |
self.logit_scale = logit_scale
|
77 |
self.no_bias = no_bias
|
78 |
-
self.verbose = verbose
|
79 |
self.embedding_fraction = embedding_fraction
|
80 |
self.norm_type = norm_type
|
81 |
self.use_cache = use_cache
|
82 |
self.init_config = init_config
|
|
|
|
|
|
|
83 |
if 'name' in kwargs:
|
84 |
del kwargs['name']
|
85 |
if 'loss_fn' in kwargs:
|
86 |
del kwargs['loss_fn']
|
|
|
|
|
|
|
87 |
super().__init__(**kwargs)
|
88 |
self._validate_config()
|
89 |
|
90 |
-
def _set_config_defaults(self, config, config_defaults):
|
91 |
for (k, v) in config_defaults.items():
|
92 |
if k not in config:
|
93 |
config[k] = v
|
94 |
return config
|
95 |
|
96 |
-
def _validate_config(self):
|
97 |
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
|
|
98 |
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
99 |
if self.d_model % self.n_heads != 0:
|
100 |
raise ValueError('d_model must be divisible by n_heads')
|
@@ -115,4 +127,14 @@ class MPTConfig(PretrainedConfig):
|
|
115 |
if self.init_config.get('name', None) is None:
|
116 |
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
117 |
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""A HuggingFace-style model configuration."""
|
2 |
+
import warnings
|
3 |
+
from typing import Any, Dict, Optional, Union
|
4 |
from transformers import PretrainedConfig
|
5 |
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
6 |
+
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
|
7 |
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
8 |
|
9 |
class MPTConfig(PretrainedConfig):
|
10 |
model_type = 'mpt'
|
11 |
|
12 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', verbose: Optional[int]=None, **kwargs: Any):
|
13 |
"""The MPT configuration class.
|
14 |
|
15 |
Args:
|
16 |
d_model (int): The size of the embedding dimension of the model.
|
17 |
n_heads (int): The number of attention heads.
|
18 |
n_layers (int): The number of layers in the model.
|
19 |
+
expansion_ratio (int): The ratio of the up/down scale in the ffn.
|
20 |
max_seq_len (int): The maximum sequence length of the model.
|
21 |
vocab_size (int): The size of the vocabulary.
|
22 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
23 |
emb_pdrop (float): The dropout probability for the embedding layer.
|
24 |
learned_pos_emb (bool): Whether to use learned positional embeddings
|
25 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
26 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
|
27 |
attn_pdrop (float): The dropout probability for the attention layers.
|
28 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
29 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
|
|
40 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
41 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
42 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
43 |
+
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
44 |
+
ffn_config (Dict): A dictionary used to configure the model's ffn module:
|
45 |
+
ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
|
46 |
init_device (str): The device to use for parameter initialization.
|
47 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
48 |
no_bias (bool): Whether to use bias in all layers.
|
49 |
verbose (int): The verbosity level. 0 is silent.
|
50 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
51 |
norm_type (str): choose type of norm to use
|
|
|
52 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
53 |
init_config (Dict): A dictionary used to configure the model initialization:
|
54 |
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
|
|
65 |
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
66 |
---
|
67 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
68 |
+
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
|
69 |
"""
|
70 |
self.d_model = d_model
|
71 |
self.n_heads = n_heads
|
|
|
77 |
self.emb_pdrop = emb_pdrop
|
78 |
self.learned_pos_emb = learned_pos_emb
|
79 |
self.attn_config = attn_config
|
80 |
+
self.ffn_config = ffn_config
|
81 |
self.init_device = init_device
|
82 |
self.logit_scale = logit_scale
|
83 |
self.no_bias = no_bias
|
|
|
84 |
self.embedding_fraction = embedding_fraction
|
85 |
self.norm_type = norm_type
|
86 |
self.use_cache = use_cache
|
87 |
self.init_config = init_config
|
88 |
+
self.fc_type = fc_type
|
89 |
+
if verbose is not None:
|
90 |
+
warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
|
91 |
if 'name' in kwargs:
|
92 |
del kwargs['name']
|
93 |
if 'loss_fn' in kwargs:
|
94 |
del kwargs['loss_fn']
|
95 |
+
if self.attn_config.get('alibi', False):
|
96 |
+
self.learned_pos_emb = False
|
97 |
+
warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
|
98 |
super().__init__(**kwargs)
|
99 |
self._validate_config()
|
100 |
|
101 |
+
def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
|
102 |
for (k, v) in config_defaults.items():
|
103 |
if k not in config:
|
104 |
config[k] = v
|
105 |
return config
|
106 |
|
107 |
+
def _validate_config(self) -> None:
|
108 |
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
109 |
+
self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
|
110 |
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
111 |
if self.d_model % self.n_heads != 0:
|
112 |
raise ValueError('d_model must be divisible by n_heads')
|
|
|
127 |
if self.init_config.get('name', None) is None:
|
128 |
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
129 |
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
130 |
+
warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
|
131 |
+
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
132 |
+
try:
|
133 |
+
import transformer_engine.pytorch as te
|
134 |
+
del te
|
135 |
+
except:
|
136 |
+
raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
|
137 |
+
if self.ffn_config['ffn_type'] == 'mptmlp':
|
138 |
+
self.ffn_config['fc_type'] = self.fc_type
|
139 |
+
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
140 |
+
self.ffn_config['bias'] = not self.no_bias
|
custom_embedding.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
from torch import Tensor
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
import torch.nn.functional as F
|
3 |
from torch import Tensor
|
fc.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
FC_CLASS_REGISTRY = {'torch': nn.Linear}
|
3 |
+
try:
|
4 |
+
import transformer_engine.pytorch as te
|
5 |
+
FC_CLASS_REGISTRY['te'] = te.Linear
|
6 |
+
except:
|
7 |
+
pass
|
ffn.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Any, Optional
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .fc import FC_CLASS_REGISTRY
|
6 |
+
try:
|
7 |
+
import transformer_engine.pytorch as te
|
8 |
+
except:
|
9 |
+
te = None
|
10 |
+
|
11 |
+
class MPTMLP(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
14 |
+
super().__init__()
|
15 |
+
fc_kwargs: dict[str, Any] = {'bias': bias}
|
16 |
+
if fc_type != 'te':
|
17 |
+
fc_kwargs['device'] = device
|
18 |
+
self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, expansion_ratio * d_model, **fc_kwargs)
|
19 |
+
self.act = nn.GELU(approximate='none')
|
20 |
+
self.down_proj = FC_CLASS_REGISTRY[fc_type](expansion_ratio * d_model, d_model, **fc_kwargs)
|
21 |
+
self.down_proj._is_residual = True
|
22 |
+
|
23 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
24 |
+
return self.down_proj(self.act(self.up_proj(x)))
|
25 |
+
FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP}
|
26 |
+
if te is not None:
|
27 |
+
te.LayerNormMLP._has_norm = True
|
28 |
+
FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
|
29 |
+
|
30 |
+
def build_ffn(d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
|
31 |
+
ffn_type = kwargs.pop('ffn_type')
|
32 |
+
if ffn_type == 'mptmlp':
|
33 |
+
if len(kwargs) > 0:
|
34 |
+
raise ValueError(f'MPTMLP got an unexpected keyword argument: {kwargs}')
|
35 |
+
return MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, device=device, bias=bias)
|
36 |
+
elif ffn_type == 'te_ln_mlp':
|
37 |
+
assert te is not None
|
38 |
+
return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=d_model * expansion_ratio, bias=bias, **kwargs)
|
39 |
+
raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
|
hf_prefixlm_converter.py
CHANGED
@@ -9,7 +9,7 @@ and treat the input prompt as the prefix in `generate`.
|
|
9 |
import math
|
10 |
import warnings
|
11 |
from types import MethodType
|
12 |
-
from typing import Any,
|
13 |
import torch
|
14 |
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
@@ -90,13 +90,14 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
90 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
for attn_module in attn_modules:
|
|
|
93 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
94 |
output = call_og_forward()
|
95 |
for attn_module in attn_modules:
|
96 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
97 |
return output
|
98 |
|
99 |
-
def generate(self: CAUSAL_GPT_TYPES, *args:
|
100 |
"""Wraps original generate to enable PrefixLM attention."""
|
101 |
attn_modules = _get_attn_modules(model)
|
102 |
for attn_module in attn_modules:
|
@@ -157,7 +158,7 @@ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCa
|
|
157 |
return alibi.to(dtype)
|
158 |
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
159 |
|
160 |
-
def
|
161 |
if deprecated_arguments.pop('position_ids', False) is not False:
|
162 |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
163 |
if len(deprecated_arguments) > 0:
|
@@ -204,9 +205,9 @@ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCa
|
|
204 |
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
205 |
use_cache = False
|
206 |
|
207 |
-
def create_custom_forward(module):
|
208 |
|
209 |
-
def custom_forward(*inputs):
|
210 |
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
211 |
return custom_forward
|
212 |
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
@@ -227,10 +228,10 @@ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCa
|
|
227 |
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
228 |
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
229 |
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
230 |
-
setattr(model.transformer, 'forward', MethodType(
|
231 |
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
232 |
|
233 |
-
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
234 |
"""Replacement forward method for BloomCausalLM."""
|
235 |
if deprecated_arguments.pop('position_ids', False) is not False:
|
236 |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
@@ -252,7 +253,8 @@ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCa
|
|
252 |
return (loss,) + output if loss is not None else output
|
253 |
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
254 |
|
255 |
-
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
|
|
256 |
if past:
|
257 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
258 |
bidirectional_mask = None
|
@@ -282,19 +284,22 @@ def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM
|
|
282 |
setattr(model, '_original_generate', getattr(model, 'generate'))
|
283 |
model.model.decoder.bidirectional_mask = None
|
284 |
|
285 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
286 |
combined_attention_mask = None
|
287 |
if input_shape[-1] > 1:
|
|
|
288 |
if self.bidirectional_mask == 'g':
|
289 |
(bsz, src_length) = input_shape
|
290 |
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
291 |
else:
|
292 |
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
293 |
if self.bidirectional_mask is not None:
|
|
|
294 |
assert attention_mask.shape == self.bidirectional_mask.shape
|
295 |
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
296 |
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
297 |
if attention_mask is not None:
|
|
|
298 |
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
299 |
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
300 |
return combined_attention_mask
|
@@ -315,7 +320,7 @@ def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM
|
|
315 |
self.model.decoder.bidirectional_mask = None
|
316 |
return outputs
|
317 |
|
318 |
-
def generate(self: OPTForCausalLM, *args: tuple, **kwargs:
|
319 |
"""Wraps original generate to enable PrefixLM-style attention."""
|
320 |
self.model.decoder.bidirectional_mask = 'g'
|
321 |
try:
|
@@ -398,7 +403,7 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
398 |
else:
|
399 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
400 |
|
401 |
-
def add_bidirectional_mask_if_missing(batch:
|
402 |
"""Attempts to add bidirectional_mask to batch if missing.
|
403 |
|
404 |
Raises:
|
|
|
9 |
import math
|
10 |
import warnings
|
11 |
from types import MethodType
|
12 |
+
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
13 |
import torch
|
14 |
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
|
|
90 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
for attn_module in attn_modules:
|
93 |
+
assert isinstance(attn_module.bias, torch.Tensor)
|
94 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
95 |
output = call_og_forward()
|
96 |
for attn_module in attn_modules:
|
97 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
98 |
return output
|
99 |
|
100 |
+
def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
|
101 |
"""Wraps original generate to enable PrefixLM attention."""
|
102 |
attn_modules = _get_attn_modules(model)
|
103 |
for attn_module in attn_modules:
|
|
|
158 |
return alibi.to(dtype)
|
159 |
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
160 |
|
161 |
+
def transformer_forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments: Any) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
162 |
if deprecated_arguments.pop('position_ids', False) is not False:
|
163 |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
164 |
if len(deprecated_arguments) > 0:
|
|
|
205 |
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
206 |
use_cache = False
|
207 |
|
208 |
+
def create_custom_forward(module: torch.nn.Module):
|
209 |
|
210 |
+
def custom_forward(*inputs: Any):
|
211 |
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
212 |
return custom_forward
|
213 |
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
|
|
228 |
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
229 |
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
230 |
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
231 |
+
setattr(model.transformer, 'forward', MethodType(transformer_forward, model.transformer))
|
232 |
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
233 |
|
234 |
+
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments: Any) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
235 |
"""Replacement forward method for BloomCausalLM."""
|
236 |
if deprecated_arguments.pop('position_ids', False) is not False:
|
237 |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
|
|
253 |
return (loss,) + output if loss is not None else output
|
254 |
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
255 |
|
256 |
+
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs: Any) -> dict:
|
257 |
+
del kwargs
|
258 |
if past:
|
259 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
260 |
bidirectional_mask = None
|
|
|
284 |
setattr(model, '_original_generate', getattr(model, 'generate'))
|
285 |
model.model.decoder.bidirectional_mask = None
|
286 |
|
287 |
+
def _prepare_decoder_attention_mask(self: torch.nn.Module, attention_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], inputs_embeds: Optional[torch.Tensor], past_key_values_length: int):
|
288 |
combined_attention_mask = None
|
289 |
if input_shape[-1] > 1:
|
290 |
+
assert inputs_embeds is not None
|
291 |
if self.bidirectional_mask == 'g':
|
292 |
(bsz, src_length) = input_shape
|
293 |
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
294 |
else:
|
295 |
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
296 |
if self.bidirectional_mask is not None:
|
297 |
+
assert attention_mask is not None
|
298 |
assert attention_mask.shape == self.bidirectional_mask.shape
|
299 |
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
300 |
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
301 |
if attention_mask is not None:
|
302 |
+
assert inputs_embeds is not None
|
303 |
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
304 |
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
305 |
return combined_attention_mask
|
|
|
320 |
self.model.decoder.bidirectional_mask = None
|
321 |
return outputs
|
322 |
|
323 |
+
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Any):
|
324 |
"""Wraps original generate to enable PrefixLM-style attention."""
|
325 |
self.model.decoder.bidirectional_mask = 'g'
|
326 |
try:
|
|
|
403 |
else:
|
404 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
405 |
|
406 |
+
def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
407 |
"""Attempts to add bidirectional_mask to batch if missing.
|
408 |
|
409 |
Raises:
|
meta_init_context.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from contextlib import contextmanager
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
|
@@ -57,25 +58,29 @@ def init_on_device(device: torch.device, include_buffers: bool=False):
|
|
57 |
if include_buffers:
|
58 |
old_register_buffer = nn.Module.register_buffer
|
59 |
|
60 |
-
def register_empty_parameter(
|
61 |
-
old_register_parameter(
|
62 |
if param is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
if include_buffers:
|
72 |
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
73 |
else:
|
74 |
tensor_constructors_to_patch = {}
|
75 |
|
76 |
-
def patch_tensor_constructor(fn):
|
77 |
|
78 |
-
def wrapper(*args, **kwargs):
|
79 |
kwargs['device'] = device
|
80 |
return fn(*args, **kwargs)
|
81 |
return wrapper
|
|
|
1 |
from contextlib import contextmanager
|
2 |
+
from typing import Any, Callable, Optional
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
|
|
58 |
if include_buffers:
|
59 |
old_register_buffer = nn.Module.register_buffer
|
60 |
|
61 |
+
def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
|
62 |
+
old_register_parameter(self, name, param)
|
63 |
if param is not None:
|
64 |
+
parameter = self._parameters[name]
|
65 |
+
assert parameter is not None
|
66 |
+
param_cls = type(parameter)
|
67 |
+
kwargs = parameter.__dict__
|
68 |
+
self._parameters[name] = param_cls(parameter.to(device), **kwargs)
|
69 |
+
|
70 |
+
def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
|
71 |
+
old_register_buffer(self, name, tensor, persistent=persistent)
|
72 |
+
if tensor is not None:
|
73 |
+
named_buffer = self._buffers[name]
|
74 |
+
assert named_buffer is not None
|
75 |
+
self._buffers[name] = named_buffer.to(device)
|
76 |
if include_buffers:
|
77 |
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
78 |
else:
|
79 |
tensor_constructors_to_patch = {}
|
80 |
|
81 |
+
def patch_tensor_constructor(fn: Callable):
|
82 |
|
83 |
+
def wrapper(*args: Any, **kwargs: Any):
|
84 |
kwargs['device'] = device
|
85 |
return fn(*args, **kwargs)
|
86 |
return wrapper
|
modeling_mpt.py
CHANGED
@@ -4,26 +4,31 @@ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
-
from typing import List, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
-
from transformers import PreTrainedModel,
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
from .attention import attn_bias_shape, build_attn_bias
|
14 |
from .blocks import MPTBlock
|
15 |
from .custom_embedding import SharedEmbedding
|
|
|
|
|
|
|
|
|
16 |
from .norm import NORM_CLASS_REGISTRY
|
17 |
from .configuration_mpt import MPTConfig
|
18 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
19 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
20 |
from .meta_init_context import init_empty_weights
|
21 |
-
from .param_init_fns import
|
22 |
try:
|
23 |
-
from .flash_attn_triton import flash_attn_func
|
24 |
except:
|
25 |
pass
|
26 |
-
|
|
|
27 |
|
28 |
class MPTPreTrainedModel(PreTrainedModel):
|
29 |
config_class = MPTConfig
|
@@ -40,6 +45,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
41 |
self.alibi = config.attn_config['alibi']
|
42 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
|
|
43 |
if config.init_device == 'mixed':
|
44 |
if dist.get_local_rank() == 0:
|
45 |
config.init_device = 'cpu'
|
@@ -51,13 +57,13 @@ class MPTModel(MPTPreTrainedModel):
|
|
51 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
52 |
self.embedding_fraction = config.embedding_fraction
|
53 |
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
54 |
-
if
|
55 |
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
56 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
57 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
58 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
59 |
if config.init_device != 'meta':
|
60 |
-
|
61 |
self.apply(self.param_init_fn)
|
62 |
self.is_causal = not self.prefix_lm
|
63 |
self._attn_bias_initialized = False
|
@@ -66,25 +72,22 @@ class MPTModel(MPTPreTrainedModel):
|
|
66 |
if config.no_bias:
|
67 |
for module in self.modules():
|
68 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
69 |
-
|
70 |
-
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
71 |
module.register_parameter('bias', None)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
init_fn_name = self.config.init_config['name']
|
78 |
-
warnings.warn(f'Using {init_fn_name} initialization.')
|
79 |
|
80 |
-
def get_input_embeddings(self):
|
81 |
return self.wte
|
82 |
|
83 |
-
def set_input_embeddings(self, value):
|
84 |
self.wte = value
|
85 |
|
86 |
@torch.no_grad()
|
87 |
-
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
88 |
if not self._attn_bias_initialized:
|
89 |
if self.attn_bias_shape:
|
90 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
@@ -115,7 +118,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
115 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
116 |
return (attn_bias, None)
|
117 |
|
118 |
-
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
119 |
(s_k, s_q) = attn_bias.shape[-2:]
|
120 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
121 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
@@ -130,7 +133,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
130 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
131 |
return attn_bias
|
132 |
|
133 |
-
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
134 |
seq_len = sequence_id.shape[-1]
|
135 |
if seq_len > self.config.max_seq_len:
|
136 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
@@ -140,7 +143,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
|
144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
146 |
if attention_mask is not None:
|
@@ -152,7 +155,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
152 |
if output_attentions:
|
153 |
if self.attn_impl != 'torch':
|
154 |
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
155 |
-
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]
|
156 |
raise NotImplementedError('MPT does not support training with left padding.')
|
157 |
if self.prefix_lm and prefix_mask is None:
|
158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
@@ -166,9 +169,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
166 |
S = input_ids.size(1)
|
167 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
168 |
tok_emb = self.wte(input_ids)
|
169 |
-
if self.
|
170 |
-
x = tok_emb
|
171 |
-
else:
|
172 |
past_position = 0
|
173 |
if past_key_values is not None:
|
174 |
if len(past_key_values) != self.config.n_layers:
|
@@ -177,12 +178,14 @@ class MPTModel(MPTPreTrainedModel):
|
|
177 |
if self.attn_impl == 'torch':
|
178 |
past_position = past_key_values[0][0].size(3)
|
179 |
if S + past_position > self.config.max_seq_len:
|
180 |
-
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
181 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
182 |
if attention_mask is not None:
|
183 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
184 |
pos_emb = self.wpe(pos)
|
185 |
x = tok_emb + pos_emb
|
|
|
|
|
186 |
if self.embedding_fraction == 1:
|
187 |
x = self.emb_drop(x)
|
188 |
else:
|
@@ -190,6 +193,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
190 |
assert isinstance(self.emb_drop, nn.Module)
|
191 |
x = self.emb_drop(x_shrunk)
|
192 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
|
|
193 |
if use_cache and past_key_values is None:
|
194 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
195 |
all_hidden_states = () if output_hidden_states else None
|
@@ -199,9 +203,9 @@ class MPTModel(MPTPreTrainedModel):
|
|
199 |
assert all_hidden_states is not None
|
200 |
all_hidden_states = all_hidden_states + (x,)
|
201 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
202 |
-
(x, attn_weights,
|
203 |
-
if
|
204 |
-
|
205 |
if output_attentions:
|
206 |
assert all_self_attns is not None
|
207 |
all_self_attns = all_self_attns + (attn_weights,)
|
@@ -209,16 +213,16 @@ class MPTModel(MPTPreTrainedModel):
|
|
209 |
if output_hidden_states:
|
210 |
assert all_hidden_states is not None
|
211 |
all_hidden_states = all_hidden_states + (x,)
|
212 |
-
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=
|
213 |
|
214 |
-
def param_init_fn(self, module):
|
215 |
init_fn_name = self.config.init_config['name']
|
216 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
217 |
|
218 |
-
def fsdp_wrap_fn(self, module):
|
219 |
return isinstance(module, MPTBlock)
|
220 |
|
221 |
-
def activation_checkpointing_fn(self, module):
|
222 |
return isinstance(module, MPTBlock)
|
223 |
|
224 |
class MPTForCausalLM(MPTPreTrainedModel):
|
@@ -227,8 +231,8 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
227 |
super().__init__(config)
|
228 |
if not config.tie_word_embeddings:
|
229 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
230 |
-
|
231 |
-
self.transformer = MPTModel(config)
|
232 |
for child in self.transformer.children():
|
233 |
if isinstance(child, torch.nn.ModuleList):
|
234 |
continue
|
@@ -244,25 +248,25 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
244 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
245 |
self.logit_scale = logit_scale
|
246 |
|
247 |
-
def get_input_embeddings(self):
|
248 |
return self.transformer.wte
|
249 |
|
250 |
-
def set_input_embeddings(self, value):
|
251 |
self.transformer.wte = value
|
252 |
|
253 |
-
def get_output_embeddings(self):
|
254 |
return self.transformer.wte
|
255 |
|
256 |
-
def set_output_embeddings(self, new_embeddings):
|
257 |
self.transformer.wte = new_embeddings
|
258 |
|
259 |
-
def set_decoder(self, decoder):
|
260 |
self.transformer = decoder
|
261 |
|
262 |
-
def get_decoder(self):
|
263 |
return self.transformer
|
264 |
|
265 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
|
266 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
267 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
268 |
if inputs_embeds is not None:
|
@@ -275,22 +279,22 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
275 |
logits *= self.logit_scale
|
276 |
loss = None
|
277 |
if labels is not None:
|
278 |
-
|
279 |
-
|
280 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)),
|
281 |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
282 |
|
283 |
-
def param_init_fn(self, module):
|
284 |
init_fn_name = self.config.init_config['name']
|
285 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
286 |
|
287 |
-
def fsdp_wrap_fn(self, module):
|
288 |
return isinstance(module, MPTBlock)
|
289 |
|
290 |
-
def activation_checkpointing_fn(self, module):
|
291 |
return isinstance(module, MPTBlock)
|
292 |
|
293 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
294 |
if inputs_embeds is not None:
|
295 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
296 |
attention_mask = kwargs['attention_mask'].bool()
|
@@ -311,7 +315,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
311 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
312 |
|
313 |
@staticmethod
|
314 |
-
def _reorder_cache(past_key_values, beam_idx):
|
315 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
316 |
|
317 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
+
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
from .attention import attn_bias_shape, build_attn_bias
|
14 |
from .blocks import MPTBlock
|
15 |
from .custom_embedding import SharedEmbedding
|
16 |
+
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
17 |
+
from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
|
18 |
+
from .ffn import MPTMLP as MPTMLP
|
19 |
+
from .ffn import build_ffn as build_ffn
|
20 |
from .norm import NORM_CLASS_REGISTRY
|
21 |
from .configuration_mpt import MPTConfig
|
22 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
23 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
24 |
from .meta_init_context import init_empty_weights
|
25 |
+
from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
|
26 |
try:
|
27 |
+
from .flash_attn_triton import flash_attn_func as flash_attn_func
|
28 |
except:
|
29 |
pass
|
30 |
+
import logging
|
31 |
+
log = logging.getLogger(__name__)
|
32 |
|
33 |
class MPTPreTrainedModel(PreTrainedModel):
|
34 |
config_class = MPTConfig
|
|
|
45 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
46 |
self.alibi = config.attn_config['alibi']
|
47 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
48 |
+
self.learned_pos_emb = config.learned_pos_emb
|
49 |
if config.init_device == 'mixed':
|
50 |
if dist.get_local_rank() == 0:
|
51 |
config.init_device = 'cpu'
|
|
|
57 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
58 |
self.embedding_fraction = config.embedding_fraction
|
59 |
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
60 |
+
if self.learned_pos_emb:
|
61 |
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
62 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
63 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
64 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
65 |
if config.init_device != 'meta':
|
66 |
+
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
67 |
self.apply(self.param_init_fn)
|
68 |
self.is_causal = not self.prefix_lm
|
69 |
self._attn_bias_initialized = False
|
|
|
72 |
if config.no_bias:
|
73 |
for module in self.modules():
|
74 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
75 |
+
log.info(f'Removing bias ({module.bias}) from {module}.')
|
|
|
76 |
module.register_parameter('bias', None)
|
77 |
+
if hasattr(module, 'use_bias'):
|
78 |
+
log.info(f'Setting use_bias=False for {module}.')
|
79 |
+
module.use_bias = False
|
80 |
+
log.debug(self)
|
81 |
+
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
|
|
|
|
82 |
|
83 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
84 |
return self.wte
|
85 |
|
86 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
87 |
self.wte = value
|
88 |
|
89 |
@torch.no_grad()
|
90 |
+
def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
|
91 |
if not self._attn_bias_initialized:
|
92 |
if self.attn_bias_shape:
|
93 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
|
|
118 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
119 |
return (attn_bias, None)
|
120 |
|
121 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
|
122 |
(s_k, s_q) = attn_bias.shape[-2:]
|
123 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
124 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
|
|
133 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
134 |
return attn_bias
|
135 |
|
136 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor) -> torch.Tensor:
|
137 |
seq_len = sequence_id.shape[-1]
|
138 |
if seq_len > self.config.max_seq_len:
|
139 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
|
|
143 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
144 |
return attn_bias
|
145 |
|
146 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
|
147 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
148 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
149 |
if attention_mask is not None:
|
|
|
155 |
if output_attentions:
|
156 |
if self.attn_impl != 'torch':
|
157 |
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
158 |
+
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
159 |
raise NotImplementedError('MPT does not support training with left padding.')
|
160 |
if self.prefix_lm and prefix_mask is None:
|
161 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
169 |
S = input_ids.size(1)
|
170 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
171 |
tok_emb = self.wte(input_ids)
|
172 |
+
if self.learned_pos_emb:
|
|
|
|
|
173 |
past_position = 0
|
174 |
if past_key_values is not None:
|
175 |
if len(past_key_values) != self.config.n_layers:
|
|
|
178 |
if self.attn_impl == 'torch':
|
179 |
past_position = past_key_values[0][0].size(3)
|
180 |
if S + past_position > self.config.max_seq_len:
|
181 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
182 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
183 |
if attention_mask is not None:
|
184 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
185 |
pos_emb = self.wpe(pos)
|
186 |
x = tok_emb + pos_emb
|
187 |
+
else:
|
188 |
+
x = tok_emb
|
189 |
if self.embedding_fraction == 1:
|
190 |
x = self.emb_drop(x)
|
191 |
else:
|
|
|
193 |
assert isinstance(self.emb_drop, nn.Module)
|
194 |
x = self.emb_drop(x_shrunk)
|
195 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
196 |
+
presents = () if use_cache else None
|
197 |
if use_cache and past_key_values is None:
|
198 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
199 |
all_hidden_states = () if output_hidden_states else None
|
|
|
203 |
assert all_hidden_states is not None
|
204 |
all_hidden_states = all_hidden_states + (x,)
|
205 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
206 |
+
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
|
207 |
+
if presents is not None:
|
208 |
+
presents += (present,)
|
209 |
if output_attentions:
|
210 |
assert all_self_attns is not None
|
211 |
all_self_attns = all_self_attns + (attn_weights,)
|
|
|
213 |
if output_hidden_states:
|
214 |
assert all_hidden_states is not None
|
215 |
all_hidden_states = all_hidden_states + (x,)
|
216 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
217 |
|
218 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
219 |
init_fn_name = self.config.init_config['name']
|
220 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
221 |
|
222 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
223 |
return isinstance(module, MPTBlock)
|
224 |
|
225 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
226 |
return isinstance(module, MPTBlock)
|
227 |
|
228 |
class MPTForCausalLM(MPTPreTrainedModel):
|
|
|
231 |
super().__init__(config)
|
232 |
if not config.tie_word_embeddings:
|
233 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
234 |
+
log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
235 |
+
self.transformer: MPTModel = MPTModel(config)
|
236 |
for child in self.transformer.children():
|
237 |
if isinstance(child, torch.nn.ModuleList):
|
238 |
continue
|
|
|
248 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
249 |
self.logit_scale = logit_scale
|
250 |
|
251 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
252 |
return self.transformer.wte
|
253 |
|
254 |
+
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
255 |
self.transformer.wte = value
|
256 |
|
257 |
+
def get_output_embeddings(self) -> nn.Embedding:
|
258 |
return self.transformer.wte
|
259 |
|
260 |
+
def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
|
261 |
self.transformer.wte = new_embeddings
|
262 |
|
263 |
+
def set_decoder(self, decoder: MPTModel) -> None:
|
264 |
self.transformer = decoder
|
265 |
|
266 |
+
def get_decoder(self) -> MPTModel:
|
267 |
return self.transformer
|
268 |
|
269 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
|
270 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
271 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
272 |
if inputs_embeds is not None:
|
|
|
279 |
logits *= self.logit_scale
|
280 |
loss = None
|
281 |
if labels is not None:
|
282 |
+
_labels = torch.roll(labels, shifts=-1)
|
283 |
+
_labels[:, -1] = -100
|
284 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
285 |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
286 |
|
287 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
288 |
init_fn_name = self.config.init_config['name']
|
289 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
290 |
|
291 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
292 |
return isinstance(module, MPTBlock)
|
293 |
|
294 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
295 |
return isinstance(module, MPTBlock)
|
296 |
|
297 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
|
298 |
if inputs_embeds is not None:
|
299 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
300 |
attention_mask = kwargs['attention_mask'].bool()
|
|
|
315 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
316 |
|
317 |
@staticmethod
|
318 |
+
def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
|
319 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
320 |
|
321 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
norm.py
CHANGED
@@ -1,6 +1,7 @@
|
|
|
|
1 |
import torch
|
2 |
|
3 |
-
def _cast_if_autocast_enabled(tensor):
|
4 |
if torch.is_autocast_enabled():
|
5 |
if tensor.device.type == 'cuda':
|
6 |
dtype = torch.get_autocast_gpu_dtype()
|
@@ -13,10 +14,10 @@ def _cast_if_autocast_enabled(tensor):
|
|
13 |
|
14 |
class LPLayerNorm(torch.nn.LayerNorm):
|
15 |
|
16 |
-
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
17 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
18 |
|
19 |
-
def forward(self, x):
|
20 |
module_device = x.device
|
21 |
downcast_x = _cast_if_autocast_enabled(x)
|
22 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
@@ -24,7 +25,7 @@ class LPLayerNorm(torch.nn.LayerNorm):
|
|
24 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
25 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
|
27 |
-
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
29 |
if weight is not None:
|
30 |
return output * weight
|
@@ -32,7 +33,7 @@ def rms_norm(x, weight=None, eps=1e-05):
|
|
32 |
|
33 |
class RMSNorm(torch.nn.Module):
|
34 |
|
35 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
36 |
super().__init__()
|
37 |
self.eps = eps
|
38 |
if weight:
|
@@ -40,17 +41,17 @@ class RMSNorm(torch.nn.Module):
|
|
40 |
else:
|
41 |
self.register_parameter('weight', None)
|
42 |
|
43 |
-
def forward(self, x):
|
44 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
45 |
|
46 |
class LPRMSNorm(RMSNorm):
|
47 |
|
48 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
49 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
50 |
|
51 |
-
def forward(self, x):
|
52 |
downcast_x = _cast_if_autocast_enabled(x)
|
53 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
54 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
55 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
56 |
-
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
|
|
1 |
+
from typing import Dict, List, Optional, Type, Union
|
2 |
import torch
|
3 |
|
4 |
+
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
5 |
if torch.is_autocast_enabled():
|
6 |
if tensor.device.type == 'cuda':
|
7 |
dtype = torch.get_autocast_gpu_dtype()
|
|
|
14 |
|
15 |
class LPLayerNorm(torch.nn.LayerNorm):
|
16 |
|
17 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
|
18 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
19 |
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
module_device = x.device
|
22 |
downcast_x = _cast_if_autocast_enabled(x)
|
23 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
|
|
25 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
26 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
27 |
|
28 |
+
def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
|
29 |
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
30 |
if weight is not None:
|
31 |
return output * weight
|
|
|
33 |
|
34 |
class RMSNorm(torch.nn.Module):
|
35 |
|
36 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
37 |
super().__init__()
|
38 |
self.eps = eps
|
39 |
if weight:
|
|
|
41 |
else:
|
42 |
self.register_parameter('weight', None)
|
43 |
|
44 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
45 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
46 |
|
47 |
class LPRMSNorm(RMSNorm):
|
48 |
|
49 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
50 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
51 |
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
downcast_x = _cast_if_autocast_enabled(x)
|
54 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
55 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
56 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
57 |
+
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
param_init_fns.py
CHANGED
@@ -2,22 +2,26 @@ import math
|
|
2 |
import warnings
|
3 |
from collections.abc import Sequence
|
4 |
from functools import partial
|
5 |
-
from typing import Optional, Tuple, Union
|
6 |
import torch
|
7 |
from torch import nn
|
|
|
8 |
from .norm import NORM_CLASS_REGISTRY
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def torch_default_param_init_fn_(module: nn.Module,
|
11 |
del kwargs
|
12 |
-
if
|
13 |
-
warnings.warn(f"Initializing network using module's reset_parameters attribute")
|
14 |
-
if hasattr(module, 'reset_parameters'):
|
15 |
module.reset_parameters()
|
16 |
|
17 |
-
def fused_init_helper_(module: nn.Module, init_fn_):
|
18 |
_fused = getattr(module, '_fused', None)
|
19 |
if _fused is None:
|
20 |
raise RuntimeError(f'Internal logic error')
|
|
|
21 |
(dim, splits) = _fused
|
22 |
splits = (0, *splits, module.weight.size(dim))
|
23 |
for (s, e) in zip(splits[:-1], splits[1:]):
|
@@ -25,10 +29,8 @@ def fused_init_helper_(module: nn.Module, init_fn_):
|
|
25 |
slice_indices[dim] = slice(s, e)
|
26 |
init_fn_(module.weight[slice_indices])
|
27 |
|
28 |
-
def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
29 |
del kwargs
|
30 |
-
if verbose > 1:
|
31 |
-
warnings.warn(f'If model has bias parameters they are initialized to 0.')
|
32 |
init_div_is_residual = init_div_is_residual
|
33 |
if init_div_is_residual is False:
|
34 |
div_is_residual = 1.0
|
@@ -36,20 +38,18 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
36 |
div_is_residual = math.sqrt(2 * n_layers)
|
37 |
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
38 |
div_is_residual = init_div_is_residual
|
39 |
-
elif
|
40 |
div_is_residual = float(init_div_is_residual)
|
41 |
else:
|
42 |
div_is_residual = 1.0
|
43 |
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
44 |
-
if
|
45 |
-
if verbose > 1:
|
46 |
-
warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
|
47 |
-
if isinstance(module, nn.Linear):
|
48 |
if hasattr(module, '_fused'):
|
49 |
fused_init_helper_(module, init_fn_)
|
50 |
else:
|
51 |
init_fn_(module.weight)
|
52 |
if module.bias is not None:
|
|
|
53 |
torch.nn.init.zeros_(module.bias)
|
54 |
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
with torch.no_grad():
|
@@ -60,8 +60,6 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
60 |
if std == 0:
|
61 |
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
63 |
-
if verbose > 1:
|
64 |
-
warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
|
65 |
elif emb_init_uniform_lim is not None:
|
66 |
lim = emb_init_uniform_lim
|
67 |
if isinstance(lim, Sequence):
|
@@ -75,17 +73,13 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
75 |
lim = [-lim, lim]
|
76 |
(a, b) = lim
|
77 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
78 |
-
if verbose > 1:
|
79 |
-
warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
|
80 |
else:
|
81 |
emb_init_fn_ = init_fn_
|
82 |
emb_init_fn_(module.weight)
|
83 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
84 |
-
if
|
85 |
-
warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
|
86 |
-
if hasattr(module, 'weight') and module.weight is not None:
|
87 |
torch.nn.init.ones_(module.weight)
|
88 |
-
if hasattr(module, 'bias') and module.bias
|
89 |
torch.nn.init.zeros_(module.bias)
|
90 |
elif isinstance(module, nn.MultiheadAttention):
|
91 |
if module._qkv_same_embed_dim:
|
@@ -114,32 +108,45 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
114 |
module.out_proj.weight.div_(div_is_residual)
|
115 |
if module.out_proj.bias is not None:
|
116 |
torch.nn.init.zeros_(module.out_proj.bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
else:
|
118 |
for _ in module.parameters(recurse=False):
|
119 |
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
120 |
|
121 |
-
def _normal_init_(std, mean=0.0):
|
122 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
123 |
|
124 |
-
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
125 |
del kwargs
|
126 |
init_fn_ = _normal_init_(std=std)
|
127 |
-
|
128 |
-
warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
129 |
-
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
130 |
|
131 |
-
def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
132 |
del kwargs
|
133 |
if init_std is None:
|
134 |
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
135 |
-
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
136 |
|
137 |
-
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
138 |
del kwargs
|
139 |
std = math.sqrt(2 / (5 * d_model))
|
140 |
-
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
141 |
|
142 |
-
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
143 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
144 |
|
145 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
@@ -148,34 +155,25 @@ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init
|
|
148 |
"""
|
149 |
del kwargs
|
150 |
residual_div = n_layers / math.sqrt(10)
|
151 |
-
|
152 |
-
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
153 |
-
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
154 |
|
155 |
-
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu',
|
156 |
del kwargs
|
157 |
-
if verbose > 1:
|
158 |
-
warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
159 |
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
160 |
-
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
161 |
|
162 |
-
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu',
|
163 |
del kwargs
|
164 |
-
if verbose > 1:
|
165 |
-
warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
166 |
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
167 |
-
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
168 |
|
169 |
-
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0,
|
170 |
del kwargs
|
171 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
172 |
-
|
173 |
-
warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
|
174 |
-
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
175 |
|
176 |
-
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0,
|
|
|
177 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
-
|
179 |
-
warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
|
180 |
-
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
181 |
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|
|
|
2 |
import warnings
|
3 |
from collections.abc import Sequence
|
4 |
from functools import partial
|
5 |
+
from typing import Any, Callable, Optional, Tuple, Union
|
6 |
import torch
|
7 |
from torch import nn
|
8 |
+
from .fc import FC_CLASS_REGISTRY
|
9 |
from .norm import NORM_CLASS_REGISTRY
|
10 |
+
try:
|
11 |
+
import transformer_engine.pytorch as te
|
12 |
+
except:
|
13 |
+
te = None
|
14 |
|
15 |
+
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
|
16 |
del kwargs
|
17 |
+
if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
|
|
|
|
|
18 |
module.reset_parameters()
|
19 |
|
20 |
+
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
|
21 |
_fused = getattr(module, '_fused', None)
|
22 |
if _fused is None:
|
23 |
raise RuntimeError(f'Internal logic error')
|
24 |
+
assert isinstance(module.weight, torch.Tensor)
|
25 |
(dim, splits) = _fused
|
26 |
splits = (0, *splits, module.weight.size(dim))
|
27 |
for (s, e) in zip(splits[:-1], splits[1:]):
|
|
|
29 |
slice_indices[dim] = slice(s, e)
|
30 |
init_fn_(module.weight[slice_indices])
|
31 |
|
32 |
+
def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
33 |
del kwargs
|
|
|
|
|
34 |
init_div_is_residual = init_div_is_residual
|
35 |
if init_div_is_residual is False:
|
36 |
div_is_residual = 1.0
|
|
|
38 |
div_is_residual = math.sqrt(2 * n_layers)
|
39 |
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
40 |
div_is_residual = init_div_is_residual
|
41 |
+
elif init_div_is_residual.isnumeric():
|
42 |
div_is_residual = float(init_div_is_residual)
|
43 |
else:
|
44 |
div_is_residual = 1.0
|
45 |
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
46 |
+
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
|
|
|
|
|
|
|
47 |
if hasattr(module, '_fused'):
|
48 |
fused_init_helper_(module, init_fn_)
|
49 |
else:
|
50 |
init_fn_(module.weight)
|
51 |
if module.bias is not None:
|
52 |
+
assert isinstance(module.bias, torch.Tensor)
|
53 |
torch.nn.init.zeros_(module.bias)
|
54 |
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
with torch.no_grad():
|
|
|
60 |
if std == 0:
|
61 |
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
|
|
|
|
63 |
elif emb_init_uniform_lim is not None:
|
64 |
lim = emb_init_uniform_lim
|
65 |
if isinstance(lim, Sequence):
|
|
|
73 |
lim = [-lim, lim]
|
74 |
(a, b) = lim
|
75 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
|
|
|
|
76 |
else:
|
77 |
emb_init_fn_ = init_fn_
|
78 |
emb_init_fn_(module.weight)
|
79 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
80 |
+
if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
|
|
|
|
|
81 |
torch.nn.init.ones_(module.weight)
|
82 |
+
if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
|
83 |
torch.nn.init.zeros_(module.bias)
|
84 |
elif isinstance(module, nn.MultiheadAttention):
|
85 |
if module._qkv_same_embed_dim:
|
|
|
108 |
module.out_proj.weight.div_(div_is_residual)
|
109 |
if module.out_proj.bias is not None:
|
110 |
torch.nn.init.zeros_(module.out_proj.bias)
|
111 |
+
elif te is not None and isinstance(module, te.LayerNormMLP):
|
112 |
+
if isinstance(module.layer_norm_weight, torch.Tensor):
|
113 |
+
torch.nn.init.ones_(module.layer_norm_weight)
|
114 |
+
if isinstance(module.layer_norm_bias, torch.Tensor):
|
115 |
+
torch.nn.init.zeros_(module.layer_norm_bias)
|
116 |
+
init_fn_(module.fc1_weight)
|
117 |
+
if module.fc1_bias is not None:
|
118 |
+
assert isinstance(module.fc1_bias, torch.Tensor)
|
119 |
+
torch.nn.init.zeros_(module.fc1_bias)
|
120 |
+
init_fn_(module.fc2_weight)
|
121 |
+
if module.fc2_bias is not None:
|
122 |
+
assert isinstance(module.fc2_bias, torch.Tensor)
|
123 |
+
torch.nn.init.zeros_(module.fc2_bias)
|
124 |
+
with torch.no_grad():
|
125 |
+
module.fc2_weight.div_(div_is_residual)
|
126 |
else:
|
127 |
for _ in module.parameters(recurse=False):
|
128 |
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
129 |
|
130 |
+
def _normal_init_(std: float, mean: float=0.0) -> Callable:
|
131 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
132 |
|
133 |
+
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
134 |
del kwargs
|
135 |
init_fn_ = _normal_init_(std=std)
|
136 |
+
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
137 |
|
138 |
+
def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
139 |
del kwargs
|
140 |
if init_std is None:
|
141 |
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
142 |
+
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
143 |
|
144 |
+
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
145 |
del kwargs
|
146 |
std = math.sqrt(2 / (5 * d_model))
|
147 |
+
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
148 |
|
149 |
+
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
150 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
151 |
|
152 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
|
|
155 |
"""
|
156 |
del kwargs
|
157 |
residual_div = n_layers / math.sqrt(10)
|
158 |
+
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
159 |
|
160 |
+
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
|
161 |
del kwargs
|
|
|
|
|
162 |
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
163 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
164 |
|
165 |
+
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
|
166 |
del kwargs
|
|
|
|
|
167 |
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
168 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
169 |
|
170 |
+
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
|
171 |
del kwargs
|
172 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
173 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
174 |
|
175 |
+
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
|
176 |
+
del kwargs
|
177 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
179 |
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|