--- license: apache-2.0 datasets: - motexture/cData language: - en - it - es base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-generation tags: - coding - coder - model - llama --- # LlamaXCoder-3.2-3B-Instruct ## Introduction LlamaXCoder-3.2-3B-Instruct is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct, trained on the cData coding dataset to improve its reasoning and coding ability. ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "motexture/LlamaXCoder-3.2-3B-Instruct", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("motexture/LlamaXCoder-3.2-3B-Instruct") prompt = "Write a C++ program that prints Hello World!" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=4096, do_sample=True, temperature=0.3 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)