--- library_name: transformers base_model: motheecreator/ViT-GPT2-Image_Captioning_model tags: - generated_from_trainer - image-to-text metrics: - bleu model-index: - name: ViT-GPT2 results: [] --- # ViT-GPT2 This model is a fine-tuned version of [motheecreator/ViT-GPT2-Image_Captioning_model](https://huggingface.co/motheecreator/ViT-GPT2-Image_Captioning_model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.125337 - Rouge2 Precision: None - Rouge2 Recall: None - Rouge2 Fmeasure: 0.155 - Bleu: 9.7054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Bleu | |:-------------:|:------:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:------:| | 2.1537 | 0.9993 | 1171 | 2.13666 | None | None | 0.1531 | 9.4673 | | 2.0434 | 1.9985 | 2342 | 2.125337 | None | None | 0.155 | 9.7054 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1