--- library_name: transformers tags: - generated_from_trainer - image-to-text - image-captioning model-index: - name: ViT-GPT2 results: [] --- # ViT-GPT2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4134 - Rouge2 Fmeasure: 0.1166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Fmeasure | |:-------------:|:------:|:----:|:---------------:|:---------------:| | No log | 0.9987 | 496 | 2.4901 | 0.1077 | | 2.5089 | 1.9995 | 993 | 2.4292 | 0.1141 | | 2.4103 | 2.9962 | 1488 | 2.4134 | 0.1166 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1