--- license: apache-2.0 base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-Facial-Expression-Recognition results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7444126074498567 --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.7038 - Accuracy: 0.7444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.7175 | 1.0 | 654 | 0.7309 | 0.7081 | | 0.6952 | 2.0 | 1308 | 0.7379 | 0.6931 | | 0.5041 | 3.0 | 1962 | 0.7444 | 0.7038 | | 0.2461 | 4.0 | 2617 | 0.7393 | 0.7843 | | 0.1846 | 5.0 | 3270 | 0.7391 | 0.8219 | | 0.276 | 6.0 | 3924 | 0.8876 | 0.7335 | | 0.2217 | 7.0 | 4578 | 0.9752 | 0.7255 | | 0.0646 | 8.0 | 5232 | 1.0957 | 0.7263 | | 0.063 | 9.0 | 5887 | 1.1335 | 0.7263 | | 0.0562 | 10.0 | 6540 | 1.1663 | 0.7307 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0