File size: 2,875 Bytes
ee5272c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3659cd
ee5272c
 
e3659cd
ee5272c
 
e3659cd
ee5272c
 
e3659cd
ee5272c
 
 
 
 
 
 
 
 
e3659cd
 
 
 
 
ee5272c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3659cd
 
 
 
 
 
 
 
 
 
ee5272c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord-sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord-sroie
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/cord-sroie
      type: mp-02/cord-sroie
    metrics:
    - name: Precision
      type: precision
      value: 0.9539473684210527
    - name: Recall
      type: recall
      value: 0.9618573797678275
    - name: F1
      type: f1
      value: 0.9578860445912468
    - name: Accuracy
      type: accuracy
      value: 0.9852276288106003
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cord-sroie

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord-sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0744
- Precision: 0.9539
- Recall: 0.9619
- F1: 0.9579
- Accuracy: 0.9852

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.7483  | 250  | 0.2724          | 0.7860    | 0.7768 | 0.7814 | 0.9414   |
| 0.7002        | 3.4965  | 500  | 0.1376          | 0.9001    | 0.9325 | 0.9160 | 0.9696   |
| 0.7002        | 5.2448  | 750  | 0.0983          | 0.9281    | 0.9417 | 0.9349 | 0.9781   |
| 0.176         | 6.9930  | 1000 | 0.0806          | 0.9411    | 0.9429 | 0.9420 | 0.9817   |
| 0.176         | 8.7413  | 1250 | 0.0779          | 0.9482    | 0.9462 | 0.9472 | 0.9824   |
| 0.0951        | 10.4895 | 1500 | 0.0740          | 0.9493    | 0.9581 | 0.9537 | 0.9844   |
| 0.0951        | 12.2378 | 1750 | 0.0744          | 0.9515    | 0.9614 | 0.9564 | 0.9848   |
| 0.0631        | 13.9860 | 2000 | 0.0740          | 0.9512    | 0.9607 | 0.9559 | 0.9846   |
| 0.0631        | 15.7343 | 2250 | 0.0756          | 0.9522    | 0.9588 | 0.9555 | 0.9846   |
| 0.0496        | 17.4825 | 2500 | 0.0744          | 0.9539    | 0.9619 | 0.9579 | 0.9852   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1