mradermacher commited on
Commit
06ddb15
1 Parent(s): 79c86cc

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,5 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  static quants of https://huggingface.co/hvadaparty/Featherlite-Arcadia-Llama3-8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: hvadaparty/Featherlite-Arcadia-Llama3-8b
3
+ datasets:
4
+ - HuggingFaceH4/SystemChat
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: apache-2.0
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - text-generation-inference
12
+ - transformers
13
+ - unsloth
14
+ - llama
15
+ - trl
16
+ - sft
17
+ ---
18
+ ## About
19
+
20
  <!-- ### quantize_version: 2 -->
21
  <!-- ### output_tensor_quantised: 1 -->
22
  <!-- ### convert_type: hf -->
23
  <!-- ### vocab_type: -->
24
  static quants of https://huggingface.co/hvadaparty/Featherlite-Arcadia-Llama3-8b
25
+
26
+ <!-- provided-files -->
27
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
28
+ ## Usage
29
+
30
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
31
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
32
+ more details, including on how to concatenate multi-part files.
33
+
34
+ ## Provided Quants
35
+
36
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
37
+
38
+ | Link | Type | Size/GB | Notes |
39
+ |:-----|:-----|--------:|:------|
40
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q2_K.gguf) | Q2_K | 3.3 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
44
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.IQ3_M.gguf) | IQ3_M | 3.9 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
46
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
50
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
53
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
54
+ | [GGUF](https://huggingface.co/mradermacher/Featherlite-Arcadia-Llama3-8b-GGUF/resolve/main/Featherlite-Arcadia-Llama3-8b.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
55
+
56
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
57
+ types (lower is better):
58
+
59
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
60
+
61
+ And here are Artefact2's thoughts on the matter:
62
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
63
+
64
+ ## FAQ / Model Request
65
+
66
+ See https://huggingface.co/mradermacher/model_requests for some answers to
67
+ questions you might have and/or if you want some other model quantized.
68
+
69
+ ## Thanks
70
+
71
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
72
+ me use its servers and providing upgrades to my workstation to enable
73
+ this work in my free time.
74
+
75
+ <!-- end -->