mradermacher commited on
Commit
0270916
1 Parent(s): 690dbc0

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,6 +1,76 @@
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TencentARC/LLaMA-Pro-8B-Instruct
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: llama2
7
+ quantized_by: mradermacher
8
+ ---
9
+ ## About
10
+
11
  <!-- ### quantize_version: 2 -->
12
  <!-- ### output_tensor_quantised: 1 -->
13
  <!-- ### convert_type: hf -->
14
  <!-- ### vocab_type: -->
15
  <!-- ### tags: nicoboss -->
16
  weighted/imatrix quants of https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct
17
+
18
+ <!-- provided-files -->
19
+ static quants are available at https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-GGUF
20
+ ## Usage
21
+
22
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
23
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
24
+ more details, including on how to concatenate multi-part files.
25
+
26
+ ## Provided Quants
27
+
28
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
29
+
30
+ | Link | Type | Size/GB | Notes |
31
+ |:-----|:-----|--------:|:------|
32
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate |
33
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate |
34
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | |
35
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | |
36
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 2.8 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | |
38
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 3.2 | IQ3_XXS probably better |
39
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.3 | lower quality |
40
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 3.7 | beats Q3_K* |
42
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.7 | IQ3_XS probably better |
43
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better |
45
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.6 | IQ3_M probably better |
46
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.6 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality |
50
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality |
52
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.2 | fast, recommended |
53
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.9 | |
54
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | |
55
+ | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 7.0 | practically like static Q6_K |
56
+
57
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
58
+ types (lower is better):
59
+
60
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
61
+
62
+ And here are Artefact2's thoughts on the matter:
63
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
64
+
65
+ ## FAQ / Model Request
66
+
67
+ See https://huggingface.co/mradermacher/model_requests for some answers to
68
+ questions you might have and/or if you want some other model quantized.
69
+
70
+ ## Thanks
71
+
72
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
73
+ me use its servers and providing upgrades to my workstation to enable
74
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
75
+
76
+ <!-- end -->