mradermacher commited on
Commit
fe95c5b
1 Parent(s): 4bf988b

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -1,6 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/ValiantLabs/Llama2-13B-ShiningValiant
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ValiantLabs/Llama2-13B-ShiningValiant
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: llama2
7
+ model_type: llama
8
+ quantized_by: mradermacher
9
+ tags:
10
+ - shining-valiant
11
+ - valiant
12
+ - valiant-labs
13
+ - llama
14
+ - llama-2
15
+ - llama-2-chat
16
+ - 13b
17
+ ---
18
+ ## About
19
+
20
  <!-- ### quantize_version: 2 -->
21
  <!-- ### output_tensor_quantised: 1 -->
22
  <!-- ### convert_type: hf -->
23
  <!-- ### vocab_type: -->
24
  <!-- ### tags: nicoboss -->
25
  weighted/imatrix quants of https://huggingface.co/ValiantLabs/Llama2-13B-ShiningValiant
26
+
27
+ <!-- provided-files -->
28
+ static quants are available at https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-GGUF
29
+ ## Usage
30
+
31
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
32
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
33
+ more details, including on how to concatenate multi-part files.
34
+
35
+ ## Provided Quants
36
+
37
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
38
+
39
+ | Link | Type | Size/GB | Notes |
40
+ |:-----|:-----|--------:|:------|
41
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate |
42
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better |
44
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better |
47
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Llama2-13B-ShiningValiant-i1-GGUF/resolve/main/Llama2-13B-ShiningValiant.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K |
50
+
51
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
52
+ types (lower is better):
53
+
54
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
55
+
56
+ And here are Artefact2's thoughts on the matter:
57
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
58
+
59
+ ## FAQ / Model Request
60
+
61
+ See https://huggingface.co/mradermacher/model_requests for some answers to
62
+ questions you might have and/or if you want some other model quantized.
63
+
64
+ ## Thanks
65
+
66
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
67
+ me use its servers and providing upgrades to my workstation to enable
68
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
69
+
70
+ <!-- end -->