--- base_model: LeroyDyer/SpydazWeb_AI_HumanAI_011_INSTRUCT datasets: - neoneye/base64-decode-v2 - neoneye/base64-encode-v1 - VuongQuoc/Chemistry_text_to_image - Kamizuru00/diagram_image_to_text - LeroyDyer/Chemistry_text_to_image_BASE64 - LeroyDyer/AudioCaps-Spectrograms_to_Base64 - LeroyDyer/winogroud_text_to_imaget_BASE64 - LeroyDyer/chart_text_to_Base64 - LeroyDyer/diagram_image_to_text_BASE64 - mekaneeky/salt_m2e_15_3_instruction - mekaneeky/SALT-languages-bible - xz56/react-llama - BeIR/hotpotqa - arcee-ai/agent-data language: - en - sw - ig - so - es - ca - xh - zu - ha - tw - af - hi - bm - su library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - Mistral_Star - Mistral_Quiet - Mistral - Mixtral - Question-Answer - Token-Classification - Sequence-Classification - SpydazWeb-AI - chemistry - biology - legal - code - climate - medical - LCARS_AI_StarTrek_Computer - text-generation-inference - chain-of-thought - tree-of-knowledge - forest-of-thoughts - visual-spacial-sketchpad - alpha-mind - knowledge-graph - entity-detection - encyclopedia - wikipedia - stack-exchange - Reddit - Cyber-series - MegaMind - Cybertron - SpydazWeb - Spydaz - LCARS - star-trek - mega-transformers - Mulit-Mega-Merge - Multi-Lingual - Afro-Centric - African-Model - Ancient-One --- ## About static quants of https://huggingface.co/LeroyDyer/SpydazWeb_AI_HumanAI_011_INSTRUCT weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SpydazWeb_AI_HumanAI_011_INSTRUCT-GGUF/resolve/main/SpydazWeb_AI_HumanAI_011_INSTRUCT.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.