--- base_model: Azure99/blossom-v5-32b datasets: - Azure99/blossom-chat-v3 - Azure99/blossom-math-v4 - Azure99/blossom-wizard-v3 - Azure99/blossom-orca-v3 language: - zh - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About static quants of https://huggingface.co/Azure99/blossom-v5-32b weighted/imatrix quants are available at https://huggingface.co/mradermacher/blossom-v5-32b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q2_K.gguf) | Q2_K | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.IQ3_XS.gguf) | IQ3_XS | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q3_K_S.gguf) | Q3_K_S | 14.4 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.IQ3_S.gguf) | IQ3_S | 14.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.IQ3_M.gguf) | IQ3_M | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q3_K_M.gguf) | Q3_K_M | 15.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q3_K_L.gguf) | Q3_K_L | 17.2 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.IQ4_XS.gguf) | IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q4_K_S.gguf) | Q4_K_S | 18.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q4_K_M.gguf) | Q4_K_M | 19.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q5_K_S.gguf) | Q5_K_S | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q5_K_M.gguf) | Q5_K_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q6_K.gguf) | Q6_K | 26.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/blossom-v5-32b-GGUF/resolve/main/blossom-v5-32b.Q8_0.gguf) | Q8_0 | 34.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.