--- base_model: google/datagemma-rag-27b-it extra_gated_button_content: Acknowledge license extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. language: - en library_name: transformers license: gemma quantized_by: mradermacher tags: - conversational --- ## About static quants of https://huggingface.co/google/datagemma-rag-27b-it weighted/imatrix quants are available at https://huggingface.co/mradermacher/datagemma-rag-27b-it-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q2_K.gguf) | Q2_K | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q3_K_S.gguf) | Q3_K_S | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q3_K_M.gguf) | Q3_K_M | 13.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q3_K_L.gguf) | Q3_K_L | 14.6 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.IQ4_XS.gguf) | IQ4_XS | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q4_K_S.gguf) | Q4_K_S | 15.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q4_K_M.gguf) | Q4_K_M | 16.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q5_K_S.gguf) | Q5_K_S | 19.0 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q5_K_M.gguf) | Q5_K_M | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q6_K.gguf) | Q6_K | 22.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/datagemma-rag-27b-it-GGUF/resolve/main/datagemma-rag-27b-it.Q8_0.gguf) | Q8_0 | 29.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.