File size: 4,196 Bytes
4a86ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3620cfe
 
 
 
 
 
4a86ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: cognitivecomputations/dolphin-2.9.3-Yi-1.5-34B-32k
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- generated_from_trainer
- axolotl
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/cognitivecomputations/dolphin-2.9.3-Yi-1.5-34B-32k

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q2_K.gguf) | Q2_K | 12.9 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.IQ3_XS.gguf) | IQ3_XS | 14.3 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q3_K_S.gguf) | Q3_K_S | 15.1 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.IQ3_S.gguf) | IQ3_S | 15.1 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.IQ3_M.gguf) | IQ3_M | 15.7 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q3_K_L.gguf) | Q3_K_L | 18.2 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.IQ4_XS.gguf) | IQ4_XS | 18.7 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q5_K_S.gguf) | Q5_K_S | 23.8 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q5_K_M.gguf) | Q5_K_M | 24.4 |  |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q6_K.gguf) | Q6_K | 28.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/dolphin-2.9.3-Yi-1.5-34B-32k-GGUF/resolve/main/dolphin-2.9.3-Yi-1.5-34B-32k.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->