--- base_model: lightblue/lb-reranker-0.5B-v1.0 datasets: - lightblue/reranker_continuous_filt_max7_train language: - en - zh - es - de - ar - ru - ja - ko - hi - sk - vi - tr - fi - id - fa - no - th - sv - pt - da - bn - te - ro - it - fr - nl - sw - pl - hu - cs - el - uk - mr - ta - tl - bg - lt - ur - he - gu - kn - am - kk - hr - uz - jv - ca - az - ms - sr - sl - yo - lv - is - ha - ka - et - bs - hy - ml - pa - mt - km - sq - or - as - my - mn - af - be - ga - mk - cy - gl - ceb - la - yi - lb - tg - gd - ne - ps - eu - ky - ku - si - ht - eo - lo - fy - sd - mg - so - ckb - su - nn library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - reranker --- ## About static quants of https://huggingface.co/lightblue/lb-reranker-0.5B-v1.0 weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/lb-reranker-0.5B-v1.0-GGUF/resolve/main/lb-reranker-0.5B-v1.0.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.