mradermacher commited on
Commit
d377001
·
verified ·
1 Parent(s): b1c5c30

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,6 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/brahmairesearch/x1-7B-v0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: brahmairesearch/x1-7B-v0.1
3
+ datasets:
4
+ - brahmairesearch/x1-exp
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: apache-2.0
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - reasoning
12
+ - transformers
13
+ - maths
14
+ - brahmai
15
+ ---
16
+ ## About
17
+
18
  <!-- ### quantize_version: 2 -->
19
  <!-- ### output_tensor_quantised: 1 -->
20
  <!-- ### convert_type: hf -->
21
  <!-- ### vocab_type: -->
22
  <!-- ### tags: -->
23
  static quants of https://huggingface.co/brahmairesearch/x1-7B-v0.1
24
+
25
+ <!-- provided-files -->
26
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/x1-7B-v0.1-i1-GGUF
27
+ ## Usage
28
+
29
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
30
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
31
+ more details, including on how to concatenate multi-part files.
32
+
33
+ ## Provided Quants
34
+
35
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
36
+
37
+ | Link | Type | Size/GB | Notes |
38
+ |:-----|:-----|--------:|:------|
39
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q2_K.gguf) | Q2_K | 3.1 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
42
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
45
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
46
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
50
+ | [GGUF](https://huggingface.co/mradermacher/x1-7B-v0.1-GGUF/resolve/main/x1-7B-v0.1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
51
+
52
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
53
+ types (lower is better):
54
+
55
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
56
+
57
+ And here are Artefact2's thoughts on the matter:
58
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
59
+
60
+ ## FAQ / Model Request
61
+
62
+ See https://huggingface.co/mradermacher/model_requests for some answers to
63
+ questions you might have and/or if you want some other model quantized.
64
+
65
+ ## Thanks
66
+
67
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
68
+ me use its servers and providing upgrades to my workstation to enable
69
+ this work in my free time.
70
+
71
+ <!-- end -->