--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: trashbot results: [] --- # trashbot This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Mean Iou: 0.4050 - Mean Accuracy: 0.8101 - Overall Accuracy: 0.8101 - Accuracy Unlabeled: nan - Accuracy Trash: 0.8101 - Iou Unlabeled: 0.0 - Iou Trash: 0.8101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:| | 0.0592 | 1.0 | 90 | 0.0387 | 0.3723 | 0.7446 | 0.7446 | nan | 0.7446 | 0.0 | 0.7446 | | 0.0402 | 2.0 | 180 | 0.0281 | 0.4123 | 0.8247 | 0.8247 | nan | 0.8247 | 0.0 | 0.8247 | | 0.0209 | 3.0 | 270 | 0.0246 | 0.3691 | 0.7382 | 0.7382 | nan | 0.7382 | 0.0 | 0.7382 | | 0.0117 | 4.0 | 360 | 0.0210 | 0.3882 | 0.7763 | 0.7763 | nan | 0.7763 | 0.0 | 0.7763 | | 0.019 | 5.0 | 450 | 0.0198 | 0.3822 | 0.7644 | 0.7644 | nan | 0.7644 | 0.0 | 0.7644 | | 0.0445 | 6.0 | 540 | 0.0199 | 0.3771 | 0.7542 | 0.7542 | nan | 0.7542 | 0.0 | 0.7542 | | 0.0195 | 7.0 | 630 | 0.0191 | 0.4177 | 0.8354 | 0.8354 | nan | 0.8354 | 0.0 | 0.8354 | | 0.008 | 8.0 | 720 | 0.0191 | 0.4060 | 0.8119 | 0.8119 | nan | 0.8119 | 0.0 | 0.8119 | | 0.0268 | 9.0 | 810 | 0.0188 | 0.4083 | 0.8166 | 0.8166 | nan | 0.8166 | 0.0 | 0.8166 | | 0.0061 | 10.0 | 900 | 0.0189 | 0.4050 | 0.8101 | 0.8101 | nan | 0.8101 | 0.0 | 0.8101 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2