File size: 4,511 Bytes
3b828b4
9edda31
 
 
 
 
3a36915
9edda31
 
 
3b828b4
 
9edda31
 
3b828b4
9edda31
3b828b4
9edda31
 
 
 
 
 
 
 
 
 
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
3b828b4
9edda31
 
 
 
 
 
 
 
3b828b4
9edda31
3b828b4
9edda31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b828b4
 
9edda31
3b828b4
9edda31
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
base_model: nvidia/mit-b1
model-index:
- name: segformer-b1-finetuned-sudoku
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b1-finetuned-sudoku

This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the mrkprc1/SudokuBoundaries2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7703
- Mean Iou: 0.0967
- Mean Accuracy: 0.1934
- Overall Accuracy: 0.1934
- Accuracy Unlabelled: nan
- Accuracy Sudoku-boundary: 0.1934
- Iou Unlabelled: 0.0
- Iou Sudoku-boundary: 0.1934

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Sudoku-boundary | Iou Unlabelled | Iou Sudoku-boundary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------------------:|:--------------:|:-------------------:|
| 0.6531        | 3.33  | 20   | 0.7016          | 0.1433   | 0.2867        | 0.2867           | nan                 | 0.2867                   | 0.0            | 0.2867              |
| 0.7654        | 6.67  | 40   | 0.7142          | 0.3064   | 0.6129        | 0.6129           | nan                 | 0.6129                   | 0.0            | 0.6129              |
| 0.4761        | 10.0  | 60   | 1.0391          | 0.0002   | 0.0005        | 0.0005           | nan                 | 0.0005                   | 0.0            | 0.0005              |
| 0.7746        | 13.33 | 80   | 1.7648          | 0.0      | 0.0           | 0.0              | nan                 | 0.0                      | 0.0            | 0.0                 |
| 0.5488        | 16.67 | 100  | 1.2288          | 0.0      | 0.0           | 0.0              | nan                 | 0.0                      | 0.0            | 0.0                 |
| 0.6242        | 20.0  | 120  | 1.5012          | 0.0      | 0.0           | 0.0              | nan                 | 0.0                      | 0.0            | 0.0                 |
| 0.5423        | 23.33 | 140  | 0.9650          | 0.0029   | 0.0059        | 0.0059           | nan                 | 0.0059                   | 0.0            | 0.0059              |
| 0.521         | 26.67 | 160  | 0.8594          | 0.0197   | 0.0393        | 0.0393           | nan                 | 0.0393                   | 0.0            | 0.0393              |
| 0.5655        | 30.0  | 180  | 0.7950          | 0.0527   | 0.1055        | 0.1055           | nan                 | 0.1055                   | 0.0            | 0.1055              |
| 0.4229        | 33.33 | 200  | 0.7910          | 0.0982   | 0.1964        | 0.1964           | nan                 | 0.1964                   | 0.0            | 0.1964              |
| 0.288         | 36.67 | 220  | 0.7591          | 0.1358   | 0.2715        | 0.2715           | nan                 | 0.2715                   | 0.0            | 0.2715              |
| 0.2002        | 40.0  | 240  | 0.7395          | 0.2414   | 0.4828        | 0.4828           | nan                 | 0.4828                   | 0.0            | 0.4828              |
| 0.6014        | 43.33 | 260  | 0.7405          | 0.2644   | 0.5289        | 0.5289           | nan                 | 0.5289                   | 0.0            | 0.5289              |
| 0.4336        | 46.67 | 280  | 0.7423          | 0.1751   | 0.3502        | 0.3502           | nan                 | 0.3502                   | 0.0            | 0.3502              |
| 0.565         | 50.0  | 300  | 0.7703          | 0.0967   | 0.1934        | 0.1934           | nan                 | 0.1934                   | 0.0            | 0.1934              |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1