File size: 4,517 Bytes
3b828b4 9edda31 9eac000 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 9eac000 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 3b828b4 9edda31 9eac000 3b828b4 9edda31 3b828b4 9edda31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: other
base_model: nvidia/mit-b1
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b1-finetuned-sudoku
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-sudoku
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the mrkprc1/SudokuBoundaries2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9826
- Mean Iou: 0.2452
- Mean Accuracy: 0.4999
- Overall Accuracy: 0.4903
- Accuracy Unlabelled: 0.9996
- Accuracy Sudoku-boundary: 0.0001
- Iou Unlabelled: 0.4903
- Iou Sudoku-boundary: 0.0001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Sudoku-boundary | Iou Unlabelled | Iou Sudoku-boundary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------------------:|:--------------:|:-------------------:|
| 0.6034 | 3.33 | 20 | 0.6951 | 0.3427 | 0.5173 | 0.5149 | 0.6432 | 0.3914 | 0.3940 | 0.2913 |
| 0.7796 | 6.67 | 40 | 0.7150 | 0.3049 | 0.5083 | 0.5021 | 0.8309 | 0.1857 | 0.4501 | 0.1597 |
| 0.4378 | 10.0 | 60 | 0.9772 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.6804 | 13.33 | 80 | 1.1605 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.58 | 16.67 | 100 | 0.9787 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.6563 | 20.0 | 120 | 1.1860 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.5128 | 23.33 | 140 | 0.8884 | 0.2457 | 0.5002 | 0.4907 | 0.9996 | 0.0009 | 0.4905 | 0.0009 |
| 0.5054 | 26.67 | 160 | 0.8746 | 0.2455 | 0.5002 | 0.4907 | 0.9998 | 0.0006 | 0.4905 | 0.0006 |
| 0.5532 | 30.0 | 180 | 0.9540 | 0.2452 | 0.5000 | 0.4905 | 1.0 | 0.0000 | 0.4905 | 0.0000 |
| 0.3238 | 33.33 | 200 | 0.8916 | 0.2470 | 0.5009 | 0.4914 | 0.9984 | 0.0035 | 0.4905 | 0.0035 |
| 0.2964 | 36.67 | 220 | 1.0162 | 0.2453 | 0.5000 | 0.4905 | 1.0000 | 0.0000 | 0.4905 | 0.0000 |
| 0.2102 | 40.0 | 240 | 0.9650 | 0.2452 | 0.4998 | 0.4903 | 0.9996 | 0.0001 | 0.4903 | 0.0001 |
| 0.623 | 43.33 | 260 | 0.9071 | 0.2461 | 0.5004 | 0.4909 | 0.9991 | 0.0017 | 0.4904 | 0.0017 |
| 0.3741 | 46.67 | 280 | 0.9245 | 0.2454 | 0.5000 | 0.4904 | 0.9994 | 0.0006 | 0.4903 | 0.0006 |
| 0.5765 | 50.0 | 300 | 0.9826 | 0.2452 | 0.4999 | 0.4903 | 0.9996 | 0.0001 | 0.4903 | 0.0001 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
|