julien-c HF staff commited on
Commit
44a8f69
1 Parent(s): 65b09a5

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/mrm8488/bert-multi-cased-finedtuned-xquad-tydiqa-goldp/README.md

Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: multilingual
3
+ thumbnail:
4
+ ---
5
+
6
+ # A fine-tuned model on GoldP task from Tydi QA dataset
7
+
8
+ This model uses [bert-multi-cased-finetuned-xquadv1](https://huggingface.co/mrm8488/bert-multi-cased-finetuned-xquadv1) and fine-tuned on [Tydi QA](https://github.com/google-research-datasets/tydiqa) dataset for Gold Passage task [(GoldP)](https://github.com/google-research-datasets/tydiqa#the-tasks)
9
+
10
+ ## Details of the language model
11
+ The base language model [(bert-multi-cased-finetuned-xquadv1)](https://huggingface.co/mrm8488/bert-multi-cased-finetuned-xquadv1) is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) for the **Q&A** downstream task
12
+
13
+
14
+ ## Details of the Tydi QA dataset
15
+
16
+ TyDi QA contains 200k human-annotated question-answer pairs in 11 Typologically Diverse languages, written without seeing the answer and without the use of translation, and is designed for the **training and evaluation** of automatic question answering systems. This repository provides evaluation code and a baseline system for the dataset. https://ai.google.com/research/tydiqa
17
+
18
+
19
+ ## Details of the downstream task (Gold Passage or GoldP aka the secondary task)
20
+
21
+ Given a passage that is guaranteed to contain the answer, predict the single contiguous span of characters that answers the question. the gold passage task differs from the [primary task](https://github.com/google-research-datasets/tydiqa/blob/master/README.md#the-tasks) in several ways:
22
+ * only the gold answer passage is provided rather than the entire Wikipedia article;
23
+ * unanswerable questions have been discarded, similar to MLQA and XQuAD;
24
+ * we evaluate with the SQuAD 1.1 metrics like XQuAD; and
25
+ * Thai and Japanese are removed since the lack of whitespace breaks some tools.
26
+
27
+
28
+ ## Model training
29
+
30
+ The model was fine-tuned on a Tesla P100 GPU and 25GB of RAM.
31
+ The script is the following:
32
+
33
+ ```python
34
+ python run_squad.py \
35
+ --model_type bert \
36
+ --model_name_or_path mrm8488/bert-multi-cased-finetuned-xquadv1 \
37
+ --do_train \
38
+ --do_eval \
39
+ --train_file /content/dataset/train.json \
40
+ --predict_file /content/dataset/dev.json \
41
+ --per_gpu_train_batch_size 24 \
42
+ --per_gpu_eval_batch_size 24 \
43
+ --learning_rate 3e-5 \
44
+ --num_train_epochs 2.5 \
45
+ --max_seq_length 384 \
46
+ --doc_stride 128 \
47
+ --output_dir /content/model_output \
48
+ --overwrite_output_dir \
49
+ --save_steps 5000 \
50
+ --threads 40
51
+ ```
52
+
53
+ ## Global Results (dev set):
54
+
55
+ | Metric | # Value |
56
+ | --------- | ----------- |
57
+ | **Exact** | **71.06** |
58
+ | **F1** | **82.16** |
59
+
60
+ ## Specific Results (per language):
61
+
62
+ | Language | # Samples | # Exact | # F1 |
63
+ | --------- | ----------- |--------| ------ |
64
+ | Arabic | 1314 | 73.29 | 84.72 |
65
+ | Bengali | 180 | 64.60 | 77.84 |
66
+ | English | 654 | 72.12 | 82.24 |
67
+ | Finnish | 1031 | 70.14 | 80.36 |
68
+ | Indonesian| 773 | 77.25 | 86.36 |
69
+ | Korean | 414 | 68.92 | 70.95 |
70
+ | Russian | 1079 | 62.65 | 78.55 |
71
+ | Swahili | 596 | 80.11 | 86.18 |
72
+ | Telegu | 874 | 71.00 | 84.24 |
73
+
74
+
75
+
76
+ > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
77
+
78
+ > Made with <span style="color: #e25555;">&hearts;</span> in Spain