File size: 4,905 Bytes
0879610 8754f1d 0879610 42e847b 0879610 42e847b 0879610 42e847b 0879610 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b aa467ae 42e847b 0879610 139796b 0879610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8921568627450981
name: Accuracy
- type: f1
value: 0.9233449477351917
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8921568627450981
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ3MjM2NTJiZjJmM2UxYTlmMDczOTQ2MjY4OTdhZTAyM2RiMTc2YjZiNWIwZDk1ZGUxMjgzMDBiOWVjZTQ4OCIsInZlcnNpb24iOjF9.yerN7Izy0yT3ykyO3t5Mr-TO3oxpTMfijCWJKnA_XO_rt81LP3-9qbqknXur6ahHqKN-1BLtr_fmAu0-IPQyDA
- type: precision
value: 0.8983050847457628
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWQxODVmYTM4OThlMjNhY2MzZTBhMWJmMmNjMDMyYjYyNzc4NWI3YzJjZDkzMTcyOWEwN2IxOWYyOGQ5NTY5MSIsInZlcnNpb24iOjF9.cfqvd8wnSqhHj5fKlIb6JN9He8ooAu94tFJytw2I93qqGSVvaTktM0Ib_DqPuHYneGY1DGbgb6Nsl90DiZSMCQ
- type: recall
value: 0.9498207885304659
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjg3Y2Y1NGY0NTRjMWFhYTAxMWYxMTcxNWM2ZDU5NGY1ZTk3OTJmZWQyYmIzMGJiZWQ0YWQ2MjNhOGU2MGU0ZCIsInZlcnNpb24iOjF9.jj7VNaWQU3u3tnngqCixlfkwF8h6ykzvHm4tgezJe1pacAU0Tsugn7IPvAJTrvNE0sU8_Q7dm-C_UKQGzmlIBw
- type: auc
value: 0.9516129032258065
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhkOTQ0ZmVlYTYwNTdjY2IxYTM5ZThhYzgzZWMxMGQzMThmZDkwNTcyMWZiNzg4Y2I3NjZhMzVjYmNmN2FlZiIsInZlcnNpb24iOjF9.28hOJFgnyNHXMpaFbNTEcolUcuNVqrXNSuT6hTs2vrjlAIWVnzxUfaHjH2kVYh1-sOSNSE9maetd1CtQ7i78CQ
- type: f1
value: 0.9233449477351917
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmY0ZWE5Y2Q5YmZlOWM4OTU0OGIwOWEwNDk3MTlkYTY5YzgwMjQwNDFjYWU4ZDdmZWY4Nzc0MzQzMTM2YTRhYyIsInZlcnNpb24iOjF9.NymiR2fVXaI6ytAGZFM8HuQLxTJlxuUsWziVNaauyuJ9xfOLOGVJ6VI_H7CoBwc-pZKbKiQOvtfpOGwt1J22CA
- type: loss
value: 0.2787226438522339
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGNhMDgyMGI3ZWI4NDVkYzM0NjE1ZTk0YjczYzU4NmRhOGYxM2RlMjU3YThhY2QzNmU3NmJhM2IzMWI5MDMwNyIsInZlcnNpb24iOjF9.HFdpBkvu0671KUgkOtpSgeGBr3wU7g51zVt3-wEwVWhS4hMX4oPFAqF4JBxFx3mgbGjTDiRQ2xiA5lm0UnkdCg
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa v3 (small) fine-tuned on MRPC
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2787
- Accuracy: 0.8922
- F1: 0.9233
- Combined Score: 0.9078
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| No log | 1.0 | 230 | 0.2787 | 0.8922 | 0.9233 | 0.9078 |
| No log | 2.0 | 460 | 0.3651 | 0.875 | 0.9137 | 0.8944 |
| No log | 3.0 | 690 | 0.5238 | 0.8799 | 0.9179 | 0.8989 |
| No log | 4.0 | 920 | 0.4712 | 0.8946 | 0.9222 | 0.9084 |
| 0.2147 | 5.0 | 1150 | 0.5704 | 0.8946 | 0.9262 | 0.9104 |
| 0.2147 | 6.0 | 1380 | 0.5697 | 0.8995 | 0.9284 | 0.9140 |
| 0.2147 | 7.0 | 1610 | 0.6651 | 0.8922 | 0.9214 | 0.9068 |
| 0.2147 | 8.0 | 1840 | 0.6726 | 0.8946 | 0.9239 | 0.9093 |
| 0.0183 | 9.0 | 2070 | 0.7250 | 0.8848 | 0.9177 | 0.9012 |
| 0.0183 | 10.0 | 2300 | 0.7093 | 0.8922 | 0.9223 | 0.9072 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|