Distiluse-m-v2 fine-tuned on stsb_multi_mt for Spanish Semantic Textual Similarity
This is a sentence-transformers model (distiluse-base-multilingual-cased-v2): It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"]
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
model = AutoModel.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
How to evaluate
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
test_data = load_dataset('stsb_multi_mt', 'es', split='test')
test_data = test_data.rename_columns({'similarity_score': 'label'})
test_data = test_data.map(lambda x: {'label': x['label'] / 5.0})
samples = []
for sample in test_data:
samples.append(InputExample(
texts=[sample['sentence1'], sample['sentence2']],
label=sample['label']
))
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
samples, write_csv=False
)
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
evaluator(model)
# It outputs: 0.7604056195656299
Evaluation Results
Spearman’s rank correlation: 0.7604056195656299
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the parameters:
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 906 with parameters:
{'batch_size': 16}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 271,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
- Downloads last month
- 2,704