File size: 37,904 Bytes
a98256c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: El hombre captura una pelota
sentences:
- Un hombre lanza una pelota en el aire.
- Un hombre se encuentra tocando una flauta de madera.
- La mujer está maquillándose usando sombra de ojos.
- source_sentence: Un hombre está buscando algo.
sentences:
- En un mercado de granjeros, se encuentra un hombre.
- Se acerca a la pista un avión suizo de color blanco.
- dos chicas jóvenes se abrazan en la hierba.
- source_sentence: El avión está tocando tierra.
sentences:
- El avión animado se encuentra en proceso de aterrizaje.
- La capital de Siria fue golpeada por dos explosiones
- Violentos incidentes afectan a estudiantes chinos en Francia
- source_sentence: Un hombre saltando la cuerda.
sentences:
- Un hombre está saltando la cuerda.
- Una mujer entrena a su perro para saltar en el aire.
- Los gatitos están comiendo de los platos.
- source_sentence: tres perros gruñendo entre sí
sentences:
- Dos perros se aproximan uno al otro en el pasto.
- Una mujer sonriente brinda cariño a un pequeño bebé.
- Una mujer está montando a caballo en el campo.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8279951103268512
name: Pearson Cosine
- type: spearman_cosine
value: 0.8342643795984531
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8228439538329566
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.834870903153992
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8231076969394738
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8349270059177344
name: Spearman Euclidean
- type: pearson_dot
value: 0.8196281042113861
name: Pearson Dot
- type: spearman_dot
value: 0.8248683461954115
name: Spearman Dot
- type: pearson_max
value: 0.8279951103268512
name: Pearson Max
- type: spearman_max
value: 0.8349270059177344
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8236357426336446
name: Pearson Cosine
- type: spearman_cosine
value: 0.8332692872015282
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8217552769156274
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8331746060276878
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8217859136681092
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8334069456110773
name: Spearman Euclidean
- type: pearson_dot
value: 0.8101789790612713
name: Pearson Dot
- type: spearman_dot
value: 0.8179205607773823
name: Spearman Dot
- type: pearson_max
value: 0.8236357426336446
name: Pearson Max
- type: spearman_max
value: 0.8334069456110773
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.816222860848086
name: Pearson Cosine
- type: spearman_cosine
value: 0.8303708513421737
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8178715987143794
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8301047046554985
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8183826652089494
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8301804247624904
name: Spearman Euclidean
- type: pearson_dot
value: 0.7878741921967743
name: Pearson Dot
- type: spearman_dot
value: 0.7904844114269662
name: Spearman Dot
- type: pearson_max
value: 0.8183826652089494
name: Pearson Max
- type: spearman_max
value: 0.8303708513421737
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.794202606017138
name: Pearson Cosine
- type: spearman_cosine
value: 0.8198385906414491
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8088714046889546
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8222921243120748
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8092312345267045
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8220266161646009
name: Spearman Euclidean
- type: pearson_dot
value: 0.7341586721030032
name: Pearson Dot
- type: spearman_dot
value: 0.7351749794310246
name: Spearman Dot
- type: pearson_max
value: 0.8092312345267045
name: Pearson Max
- type: spearman_max
value: 0.8222921243120748
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.7727295051414095
name: Pearson Cosine
- type: spearman_cosine
value: 0.8076629783565549
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7976419723073269
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8147883308842346
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7979124462870892
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8123832197697319
name: Spearman Euclidean
- type: pearson_dot
value: 0.6725844492342726
name: Pearson Dot
- type: spearman_dot
value: 0.6673162832940408
name: Spearman Dot
- type: pearson_max
value: 0.7979124462870892
name: Pearson Max
- type: spearman_max
value: 0.8147883308842346
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8630482725201897
name: Pearson Cosine
- type: spearman_cosine
value: 0.8813284718659181
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8770818288812614
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8810971983428288
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8770132070253477
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8812162173545179
name: Spearman Euclidean
- type: pearson_dot
value: 0.8581811981775829
name: Pearson Dot
- type: spearman_dot
value: 0.8707402246720045
name: Spearman Dot
- type: pearson_max
value: 0.8770818288812614
name: Pearson Max
- type: spearman_max
value: 0.8813284718659181
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8589909139210625
name: Pearson Cosine
- type: spearman_cosine
value: 0.8799604919891442
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8744468387217347
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8791142262015441
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8747974723064821
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8795698184784307
name: Spearman Euclidean
- type: pearson_dot
value: 0.8464185524060444
name: Pearson Dot
- type: spearman_dot
value: 0.8549652098582826
name: Spearman Dot
- type: pearson_max
value: 0.8747974723064821
name: Pearson Max
- type: spearman_max
value: 0.8799604919891442
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8528262537030415
name: Pearson Cosine
- type: spearman_cosine
value: 0.8762917275750132
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8715060008387856
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8780718380107112
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.87251419758469
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8788770265821976
name: Spearman Euclidean
- type: pearson_dot
value: 0.801980870958869
name: Pearson Dot
- type: spearman_dot
value: 0.8007112694661982
name: Spearman Dot
- type: pearson_max
value: 0.87251419758469
name: Pearson Max
- type: spearman_max
value: 0.8788770265821976
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8392066286150661
name: Pearson Cosine
- type: spearman_cosine
value: 0.8692426944903685
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8631603748425567
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8715673768304316
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8643871758114816
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8724091426441261
name: Spearman Euclidean
- type: pearson_dot
value: 0.7461565194503229
name: Pearson Dot
- type: spearman_dot
value: 0.7403017354497338
name: Spearman Dot
- type: pearson_max
value: 0.8643871758114816
name: Pearson Max
- type: spearman_max
value: 0.8724091426441261
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.8213671607347727
name: Pearson Cosine
- type: spearman_cosine
value: 0.8621003145087452
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8530869243121955
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8631973638935834
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.854140567169475
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8632627342101252
name: Spearman Euclidean
- type: pearson_dot
value: 0.6853599968011839
name: Pearson Dot
- type: spearman_dot
value: 0.6726454086764928
name: Spearman Dot
- type: pearson_max
value: 0.854140567169475
name: Pearson Max
- type: spearman_max
value: 0.8632627342101252
name: Spearman Max
---
# SentenceTransformer based on intfloat/multilingual-e5-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e")
# Run inference
sentences = [
'tres perros gruñendo entre sí',
'Dos perros se aproximan uno al otro en el pasto.',
'Una mujer sonriente brinda cariño a un pequeño bebé.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.828 |
| **spearman_cosine** | **0.8343** |
| pearson_manhattan | 0.8228 |
| spearman_manhattan | 0.8349 |
| pearson_euclidean | 0.8231 |
| spearman_euclidean | 0.8349 |
| pearson_dot | 0.8196 |
| spearman_dot | 0.8249 |
| pearson_max | 0.828 |
| spearman_max | 0.8349 |
#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8236 |
| **spearman_cosine** | **0.8333** |
| pearson_manhattan | 0.8218 |
| spearman_manhattan | 0.8332 |
| pearson_euclidean | 0.8218 |
| spearman_euclidean | 0.8334 |
| pearson_dot | 0.8102 |
| spearman_dot | 0.8179 |
| pearson_max | 0.8236 |
| spearman_max | 0.8334 |
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8162 |
| **spearman_cosine** | **0.8304** |
| pearson_manhattan | 0.8179 |
| spearman_manhattan | 0.8301 |
| pearson_euclidean | 0.8184 |
| spearman_euclidean | 0.8302 |
| pearson_dot | 0.7879 |
| spearman_dot | 0.7905 |
| pearson_max | 0.8184 |
| spearman_max | 0.8304 |
#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7942 |
| **spearman_cosine** | **0.8198** |
| pearson_manhattan | 0.8089 |
| spearman_manhattan | 0.8223 |
| pearson_euclidean | 0.8092 |
| spearman_euclidean | 0.822 |
| pearson_dot | 0.7342 |
| spearman_dot | 0.7352 |
| pearson_max | 0.8092 |
| spearman_max | 0.8223 |
#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7727 |
| **spearman_cosine** | **0.8077** |
| pearson_manhattan | 0.7976 |
| spearman_manhattan | 0.8148 |
| pearson_euclidean | 0.7979 |
| spearman_euclidean | 0.8124 |
| pearson_dot | 0.6726 |
| spearman_dot | 0.6673 |
| pearson_max | 0.7979 |
| spearman_max | 0.8148 |
#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.863 |
| **spearman_cosine** | **0.8813** |
| pearson_manhattan | 0.8771 |
| spearman_manhattan | 0.8811 |
| pearson_euclidean | 0.877 |
| spearman_euclidean | 0.8812 |
| pearson_dot | 0.8582 |
| spearman_dot | 0.8707 |
| pearson_max | 0.8771 |
| spearman_max | 0.8813 |
#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:---------|
| pearson_cosine | 0.859 |
| **spearman_cosine** | **0.88** |
| pearson_manhattan | 0.8744 |
| spearman_manhattan | 0.8791 |
| pearson_euclidean | 0.8748 |
| spearman_euclidean | 0.8796 |
| pearson_dot | 0.8464 |
| spearman_dot | 0.855 |
| pearson_max | 0.8748 |
| spearman_max | 0.88 |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8528 |
| **spearman_cosine** | **0.8763** |
| pearson_manhattan | 0.8715 |
| spearman_manhattan | 0.8781 |
| pearson_euclidean | 0.8725 |
| spearman_euclidean | 0.8789 |
| pearson_dot | 0.802 |
| spearman_dot | 0.8007 |
| pearson_max | 0.8725 |
| spearman_max | 0.8789 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8392 |
| **spearman_cosine** | **0.8692** |
| pearson_manhattan | 0.8632 |
| spearman_manhattan | 0.8716 |
| pearson_euclidean | 0.8644 |
| spearman_euclidean | 0.8724 |
| pearson_dot | 0.7462 |
| spearman_dot | 0.7403 |
| pearson_max | 0.8644 |
| spearman_max | 0.8724 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8214 |
| **spearman_cosine** | **0.8621** |
| pearson_manhattan | 0.8531 |
| spearman_manhattan | 0.8632 |
| pearson_euclidean | 0.8541 |
| spearman_euclidean | 0.8633 |
| pearson_dot | 0.6854 |
| spearman_dot | 0.6726 |
| pearson_max | 0.8541 |
| spearman_max | 0.8633 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
* Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
* Size: 2,697 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
| <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code> | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code> | <code>3.200000047683716</code> |
| <code>Una chica está tocando la flauta en un parque.</code> | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code> | <code>1.286</code> |
| <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
* Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
* Size: 697 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
| <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code> | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code> | <code>4.199999809265137</code> |
| <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code> | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code> | <code>3.5</code> |
| <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.5917 | 100 | 21.7032 | 21.7030 | 0.8030 | 0.8124 | 0.8205 | 0.7839 | 0.8215 | - | - | - | - | - |
| 1.1834 | 200 | 21.4019 | 24.0898 | 0.7839 | 0.7972 | 0.8038 | 0.7680 | 0.8062 | - | - | - | - | - |
| 1.7751 | 300 | 21.2168 | 22.5421 | 0.7909 | 0.8027 | 0.8058 | 0.7786 | 0.8068 | - | - | - | - | - |
| 2.3669 | 400 | 20.7049 | 23.6522 | 0.7938 | 0.8049 | 0.8108 | 0.7873 | 0.8123 | - | - | - | - | - |
| 2.9586 | 500 | 20.5077 | 23.6100 | 0.8017 | 0.8116 | 0.8155 | 0.7893 | 0.8185 | - | - | - | - | - |
| 3.5503 | 600 | 19.2725 | 24.7539 | 0.8133 | 0.8254 | 0.8291 | 0.8032 | 0.8314 | - | - | - | - | - |
| 4.1420 | 700 | 19.0841 | 26.5286 | 0.8210 | 0.8298 | 0.8333 | 0.8102 | 0.8333 | - | - | - | - | - |
| 4.7337 | 800 | 18.6847 | 26.8158 | 0.8198 | 0.8304 | 0.8333 | 0.8077 | 0.8343 | - | - | - | - | - |
| 5.0 | 845 | - | - | - | - | - | - | - | 0.8692 | 0.8763 | 0.8800 | 0.8621 | 0.8813 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |