--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e") # Run inference sentences = [ 'tres perros gruñendo entre sí', 'Dos perros se aproximan uno al otro en el pasto.', 'Una mujer sonriente brinda cariño a un pequeño bebé.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.828 | | **spearman_cosine** | **0.8343** | | pearson_manhattan | 0.8228 | | spearman_manhattan | 0.8349 | | pearson_euclidean | 0.8231 | | spearman_euclidean | 0.8349 | | pearson_dot | 0.8196 | | spearman_dot | 0.8249 | | pearson_max | 0.828 | | spearman_max | 0.8349 | #### Semantic Similarity * Dataset: `sts-dev-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8236 | | **spearman_cosine** | **0.8333** | | pearson_manhattan | 0.8218 | | spearman_manhattan | 0.8332 | | pearson_euclidean | 0.8218 | | spearman_euclidean | 0.8334 | | pearson_dot | 0.8102 | | spearman_dot | 0.8179 | | pearson_max | 0.8236 | | spearman_max | 0.8334 | #### Semantic Similarity * Dataset: `sts-dev-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8162 | | **spearman_cosine** | **0.8304** | | pearson_manhattan | 0.8179 | | spearman_manhattan | 0.8301 | | pearson_euclidean | 0.8184 | | spearman_euclidean | 0.8302 | | pearson_dot | 0.7879 | | spearman_dot | 0.7905 | | pearson_max | 0.8184 | | spearman_max | 0.8304 | #### Semantic Similarity * Dataset: `sts-dev-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7942 | | **spearman_cosine** | **0.8198** | | pearson_manhattan | 0.8089 | | spearman_manhattan | 0.8223 | | pearson_euclidean | 0.8092 | | spearman_euclidean | 0.822 | | pearson_dot | 0.7342 | | spearman_dot | 0.7352 | | pearson_max | 0.8092 | | spearman_max | 0.8223 | #### Semantic Similarity * Dataset: `sts-dev-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7727 | | **spearman_cosine** | **0.8077** | | pearson_manhattan | 0.7976 | | spearman_manhattan | 0.8148 | | pearson_euclidean | 0.7979 | | spearman_euclidean | 0.8124 | | pearson_dot | 0.6726 | | spearman_dot | 0.6673 | | pearson_max | 0.7979 | | spearman_max | 0.8148 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.863 | | **spearman_cosine** | **0.8813** | | pearson_manhattan | 0.8771 | | spearman_manhattan | 0.8811 | | pearson_euclidean | 0.877 | | spearman_euclidean | 0.8812 | | pearson_dot | 0.8582 | | spearman_dot | 0.8707 | | pearson_max | 0.8771 | | spearman_max | 0.8813 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:---------| | pearson_cosine | 0.859 | | **spearman_cosine** | **0.88** | | pearson_manhattan | 0.8744 | | spearman_manhattan | 0.8791 | | pearson_euclidean | 0.8748 | | spearman_euclidean | 0.8796 | | pearson_dot | 0.8464 | | spearman_dot | 0.855 | | pearson_max | 0.8748 | | spearman_max | 0.88 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8528 | | **spearman_cosine** | **0.8763** | | pearson_manhattan | 0.8715 | | spearman_manhattan | 0.8781 | | pearson_euclidean | 0.8725 | | spearman_euclidean | 0.8789 | | pearson_dot | 0.802 | | spearman_dot | 0.8007 | | pearson_max | 0.8725 | | spearman_max | 0.8789 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8392 | | **spearman_cosine** | **0.8692** | | pearson_manhattan | 0.8632 | | spearman_manhattan | 0.8716 | | pearson_euclidean | 0.8644 | | spearman_euclidean | 0.8724 | | pearson_dot | 0.7462 | | spearman_dot | 0.7403 | | pearson_max | 0.8644 | | spearman_max | 0.8724 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8214 | | **spearman_cosine** | **0.8621** | | pearson_manhattan | 0.8531 | | spearman_manhattan | 0.8632 | | pearson_euclidean | 0.8541 | | spearman_euclidean | 0.8633 | | pearson_dot | 0.6854 | | spearman_dot | 0.6726 | | pearson_max | 0.8541 | | spearman_max | 0.8633 | ## Training Details ### Training Dataset #### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 * Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 * Size: 2,697 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------| | El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha. | Un ave de color amarillo descansaba tranquilamente en una rama. | 3.200000047683716 | | Una chica está tocando la flauta en un parque. | Un grupo de músicos está tocando en un escenario al aire libre. | 1.286 | | La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece | La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere | 4.199999809265137 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 * Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 * Size: 697 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------| | Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas. | Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos. | 4.199999809265137 | | "Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud" | "A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar." | 3.5 | | El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario. | Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida. | 3.691999912261963 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.5917 | 100 | 21.7032 | 21.7030 | 0.8030 | 0.8124 | 0.8205 | 0.7839 | 0.8215 | - | - | - | - | - | | 1.1834 | 200 | 21.4019 | 24.0898 | 0.7839 | 0.7972 | 0.8038 | 0.7680 | 0.8062 | - | - | - | - | - | | 1.7751 | 300 | 21.2168 | 22.5421 | 0.7909 | 0.8027 | 0.8058 | 0.7786 | 0.8068 | - | - | - | - | - | | 2.3669 | 400 | 20.7049 | 23.6522 | 0.7938 | 0.8049 | 0.8108 | 0.7873 | 0.8123 | - | - | - | - | - | | 2.9586 | 500 | 20.5077 | 23.6100 | 0.8017 | 0.8116 | 0.8155 | 0.7893 | 0.8185 | - | - | - | - | - | | 3.5503 | 600 | 19.2725 | 24.7539 | 0.8133 | 0.8254 | 0.8291 | 0.8032 | 0.8314 | - | - | - | - | - | | 4.1420 | 700 | 19.0841 | 26.5286 | 0.8210 | 0.8298 | 0.8333 | 0.8102 | 0.8333 | - | - | - | - | - | | 4.7337 | 800 | 18.6847 | 26.8158 | 0.8198 | 0.8304 | 0.8333 | 0.8077 | 0.8343 | - | - | - | - | - | | 5.0 | 845 | - | - | - | - | - | - | - | 0.8692 | 0.8763 | 0.8800 | 0.8621 | 0.8813 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.0 - Transformers: 4.41.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```