--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: finetuned results: [] --- # finetuned This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5282 | 0.3410 | 100 | 0.4418 | | 0.3992 | 0.6820 | 200 | 0.3800 | | 0.3324 | 1.0230 | 300 | 0.3341 | | 0.3127 | 1.3640 | 400 | 0.3147 | | 0.2591 | 1.7050 | 500 | 0.2895 | | 0.2621 | 2.0460 | 600 | 0.2926 | | 0.2195 | 2.3870 | 700 | 0.2826 | | 0.2225 | 2.7280 | 800 | 0.2803 | ### Framework versions - PEFT 0.13.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1