add ep800 ckpt
Browse files
epoch_800.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57112bf871864a1e283d786d4282f2d1224679230d43e16db1a687ff42cece64
|
3 |
+
size 11327467474
|
mae_lama-large-p16_8xb512-amp-coslr-800e_in1k.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=4096)
|
2 |
+
data_preprocessor = dict(
|
3 |
+
mean=[
|
4 |
+
123.675,
|
5 |
+
116.28,
|
6 |
+
103.53,
|
7 |
+
],
|
8 |
+
non_blocking=True,
|
9 |
+
std=[
|
10 |
+
58.395,
|
11 |
+
57.12,
|
12 |
+
57.375,
|
13 |
+
],
|
14 |
+
to_rgb=True,
|
15 |
+
type='SelfSupDataPreprocessor')
|
16 |
+
data_root = '/workdir/ILSVRC2012/'
|
17 |
+
dataset_type = 'ImageNet'
|
18 |
+
default_hooks = dict(
|
19 |
+
checkpoint=dict(interval=1, max_keep_ckpts=2, type='CheckpointHook'),
|
20 |
+
logger=dict(interval=20, type='LoggerHook'),
|
21 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
22 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
23 |
+
timer=dict(type='IterTimerHook'),
|
24 |
+
visualization=dict(enable=False, type='VisualizationHook'))
|
25 |
+
default_scope = 'mmpretrain'
|
26 |
+
env_cfg = dict(
|
27 |
+
cudnn_benchmark=True,
|
28 |
+
dist_cfg=dict(backend='nccl'),
|
29 |
+
mp_cfg=dict(mp_start_method='spawn', opencv_num_threads=0))
|
30 |
+
launcher = 'pytorch'
|
31 |
+
load_from = None
|
32 |
+
log_level = 'INFO'
|
33 |
+
model = dict(
|
34 |
+
backbone=dict(arch='l', mask_ratio=0.75, patch_size=16, type='MAELLaMA'),
|
35 |
+
head=dict(
|
36 |
+
loss=dict(criterion='L2', type='PixelReconstructionLoss'),
|
37 |
+
norm_pix=True,
|
38 |
+
patch_size=16,
|
39 |
+
type='MAEPretrainHead'),
|
40 |
+
init_cfg=[
|
41 |
+
dict(distribution='uniform', layer='Linear', type='Xavier'),
|
42 |
+
dict(bias=0.0, layer='LayerNorm', type='Constant', val=1.0),
|
43 |
+
],
|
44 |
+
neck=dict(
|
45 |
+
decoder_depth=8,
|
46 |
+
decoder_embed_dim=512,
|
47 |
+
decoder_num_heads=16,
|
48 |
+
embed_dim=1024,
|
49 |
+
in_chans=3,
|
50 |
+
mlp_ratio=4.0,
|
51 |
+
patch_size=16,
|
52 |
+
type='MAEPretrainDecoder'),
|
53 |
+
type='MAE')
|
54 |
+
optim_wrapper = dict(
|
55 |
+
loss_scale='dynamic',
|
56 |
+
optimizer=dict(
|
57 |
+
betas=(
|
58 |
+
0.9,
|
59 |
+
0.95,
|
60 |
+
), lr=0.0024, type='AdamW', weight_decay=0.05),
|
61 |
+
paramwise_cfg=dict(
|
62 |
+
custom_keys=dict(
|
63 |
+
bias=dict(decay_mult=0.0),
|
64 |
+
cls_token=dict(decay_mult=0.0),
|
65 |
+
ln=dict(decay_mult=0.0),
|
66 |
+
mask_token=dict(decay_mult=0.0),
|
67 |
+
pos_embed=dict(decay_mult=0.0))),
|
68 |
+
type='AmpOptimWrapper')
|
69 |
+
param_scheduler = [
|
70 |
+
dict(
|
71 |
+
begin=0,
|
72 |
+
by_epoch=True,
|
73 |
+
convert_to_iter_based=True,
|
74 |
+
end=40,
|
75 |
+
start_factor=1e-09,
|
76 |
+
type='LinearLR'),
|
77 |
+
dict(
|
78 |
+
T_max=760,
|
79 |
+
begin=40,
|
80 |
+
by_epoch=True,
|
81 |
+
convert_to_iter_based=True,
|
82 |
+
end=800,
|
83 |
+
type='CosineAnnealingLR'),
|
84 |
+
]
|
85 |
+
randomness = dict(deterministic=False, diff_rank_seed=True, seed=0)
|
86 |
+
resume = True
|
87 |
+
train_cfg = dict(max_epochs=800, type='EpochBasedTrainLoop')
|
88 |
+
train_dataloader = dict(
|
89 |
+
batch_size=256,
|
90 |
+
collate_fn=dict(type='default_collate'),
|
91 |
+
dataset=dict(
|
92 |
+
data_root='/workdir/ILSVRC2012/',
|
93 |
+
pipeline=[
|
94 |
+
dict(type='LoadImageFromFile'),
|
95 |
+
dict(
|
96 |
+
backend='pillow',
|
97 |
+
crop_ratio_range=(
|
98 |
+
0.2,
|
99 |
+
1.0,
|
100 |
+
),
|
101 |
+
interpolation='bicubic',
|
102 |
+
scale=224,
|
103 |
+
type='RandomResizedCrop'),
|
104 |
+
dict(prob=0.5, type='RandomFlip'),
|
105 |
+
dict(type='PackInputs'),
|
106 |
+
],
|
107 |
+
split='train',
|
108 |
+
type='ImageNet'),
|
109 |
+
num_workers=8,
|
110 |
+
persistent_workers=True,
|
111 |
+
pin_memory=True,
|
112 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
113 |
+
train_pipeline = [
|
114 |
+
dict(type='LoadImageFromFile'),
|
115 |
+
dict(
|
116 |
+
backend='pillow',
|
117 |
+
crop_ratio_range=(
|
118 |
+
0.2,
|
119 |
+
1.0,
|
120 |
+
),
|
121 |
+
interpolation='bicubic',
|
122 |
+
scale=224,
|
123 |
+
type='RandomResizedCrop'),
|
124 |
+
dict(prob=0.5, type='RandomFlip'),
|
125 |
+
dict(type='PackInputs'),
|
126 |
+
]
|
127 |
+
vis_backends = [
|
128 |
+
dict(type='LocalVisBackend'),
|
129 |
+
]
|
130 |
+
visualizer = dict(
|
131 |
+
type='UniversalVisualizer', vis_backends=[
|
132 |
+
dict(type='LocalVisBackend'),
|
133 |
+
])
|
134 |
+
work_dir = './work_dirs/mae_lama-large-p16_8xb512-amp-coslr-800e_in1k'
|