mudassir734
commited on
Commit
•
78b3056
1
Parent(s):
cd9b559
Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +62 -0
- checkpoint-423/1_Pooling/config.json +10 -0
- checkpoint-423/README.md +418 -0
- checkpoint-423/config.json +26 -0
- checkpoint-423/config_sentence_transformers.json +10 -0
- checkpoint-423/model.safetensors +3 -0
- checkpoint-423/modules.json +20 -0
- checkpoint-423/optimizer.pt +3 -0
- checkpoint-423/rng_state.pth +3 -0
- checkpoint-423/scheduler.pt +3 -0
- checkpoint-423/sentence_bert_config.json +4 -0
- checkpoint-423/special_tokens_map.json +37 -0
- checkpoint-423/tokenizer.json +0 -0
- checkpoint-423/tokenizer_config.json +64 -0
- checkpoint-423/trainer_state.json +178 -0
- checkpoint-423/training_args.bin +3 -0
- checkpoint-423/vocab.txt +0 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320234.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.0 +2 -2
- runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320552.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.1 +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- training_args.bin +3 -0
- training_params.json +33 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- autotrain
|
9 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'search_query: i love autotrain'
|
12 |
+
sentences:
|
13 |
+
- 'search_query: huggingface auto train'
|
14 |
+
- 'search_query: hugging face auto train'
|
15 |
+
- 'search_query: i love autotrain'
|
16 |
+
pipeline_tag: sentence-similarity
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model Trained Using AutoTrain
|
20 |
+
|
21 |
+
- Problem type: Sentence Transformers
|
22 |
+
|
23 |
+
## Validation Metrics
|
24 |
+
loss: 0.3288682699203491
|
25 |
+
|
26 |
+
runtime: 6.5691
|
27 |
+
|
28 |
+
samples_per_second: 42.776
|
29 |
+
|
30 |
+
steps_per_second: 2.74
|
31 |
+
|
32 |
+
: 3.0
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
### Direct Usage (Sentence Transformers)
|
37 |
+
|
38 |
+
First install the Sentence Transformers library:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
pip install -U sentence-transformers
|
42 |
+
```
|
43 |
+
|
44 |
+
Then you can load this model and run inference.
|
45 |
+
```python
|
46 |
+
from sentence_transformers import SentenceTransformer
|
47 |
+
|
48 |
+
# Download from the Hugging Face Hub
|
49 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
50 |
+
# Run inference
|
51 |
+
sentences = [
|
52 |
+
'search_query: autotrain',
|
53 |
+
'search_query: auto train',
|
54 |
+
'search_query: i love autotrain',
|
55 |
+
]
|
56 |
+
embeddings = model.encode(sentences)
|
57 |
+
print(embeddings.shape)
|
58 |
+
|
59 |
+
# Get the similarity scores for the embeddings
|
60 |
+
similarities = model.similarity(embeddings, embeddings)
|
61 |
+
print(similarities.shape)
|
62 |
+
```
|
checkpoint-423/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-423/README.md
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:1121
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: How is DNA used in forensic science?
|
16 |
+
sentences:
|
17 |
+
- 'Cellular respiration consists of three main stages: glycolysis, the Krebs cycle
|
18 |
+
(citric acid cycle), and the electron transport chain.'
|
19 |
+
- DNA is used in forensic science to identify individuals and establish connections
|
20 |
+
between suspects and crime scenes through DNA profiling. It provides unique genetic
|
21 |
+
information that can match evidence with individuals.
|
22 |
+
- ' "Apologies, but I am here to assist with educational inquiries only."'
|
23 |
+
- source_sentence: Which star is closest to Earth?
|
24 |
+
sentences:
|
25 |
+
- ' "A digital thermometer measures temperature by using electronic sensors, such
|
26 |
+
as thermistors or thermocouples, which change their resistance or voltage in response
|
27 |
+
to temperature changes. The thermometer then converts these readings into a digital
|
28 |
+
display."'
|
29 |
+
- The closest star to Earth, other than the Sun, is Proxima Centauri.
|
30 |
+
- ' "Apologies, but I am here to assist with educational inquiries only."'
|
31 |
+
- source_sentence: What is the significance of the concept of an interpolation method?
|
32 |
+
sentences:
|
33 |
+
- Eigenvalue decomposition is a method of breaking down a matrix into its eigenvalues
|
34 |
+
and eigenvectors, used in linear algebra to analyze and simplify matrix operations.
|
35 |
+
- Enzymes are biological catalysts that speed up chemical reactions in living organisms
|
36 |
+
by lowering the activation energy required for the reactions to occur. They are
|
37 |
+
crucial for processes such as digestion, metabolism, and cellular functions.
|
38 |
+
- An interpolation method is a technique used to estimate values between known data
|
39 |
+
points, used in numerical analysis and data fitting to approximate functions and
|
40 |
+
curves.
|
41 |
+
- source_sentence: What is the concept of a Differential Form in calculus?
|
42 |
+
sentences:
|
43 |
+
- ' "Apologies, but I am here to assist with educational inquiries only."'
|
44 |
+
- ' "Apologies, but I am here to assist with educational inquiries only."'
|
45 |
+
- A differential form is a mathematical object that generalizes functions and vectors,
|
46 |
+
used in multivariable calculus and differential geometry.
|
47 |
+
- source_sentence: Do you know any good methods for managing personal effectiveness?
|
48 |
+
sentences:
|
49 |
+
- ' "Apologies, but I am here to assist with educational inquiries only."'
|
50 |
+
- ' "A thermocouple measures temperature by generating a voltage based on the temperature
|
51 |
+
difference between two different types of metal wires joined at one end. The voltage
|
52 |
+
is proportional to the temperature difference."'
|
53 |
+
- A principal component is a direction in which the data varies the most, used in
|
54 |
+
principal component analysis to reduce dimensionality and identify key features
|
55 |
+
in the data.
|
56 |
+
---
|
57 |
+
|
58 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
59 |
+
|
60 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
61 |
+
|
62 |
+
## Model Details
|
63 |
+
|
64 |
+
### Model Description
|
65 |
+
- **Model Type:** Sentence Transformer
|
66 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
67 |
+
- **Maximum Sequence Length:** 256 tokens
|
68 |
+
- **Output Dimensionality:** 384 tokens
|
69 |
+
- **Similarity Function:** Cosine Similarity
|
70 |
+
<!-- - **Training Dataset:** Unknown -->
|
71 |
+
<!-- - **Language:** Unknown -->
|
72 |
+
<!-- - **License:** Unknown -->
|
73 |
+
|
74 |
+
### Model Sources
|
75 |
+
|
76 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
77 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
78 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
79 |
+
|
80 |
+
### Full Model Architecture
|
81 |
+
|
82 |
+
```
|
83 |
+
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
85 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
86 |
+
(2): Normalize()
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Usage
|
91 |
+
|
92 |
+
### Direct Usage (Sentence Transformers)
|
93 |
+
|
94 |
+
First install the Sentence Transformers library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install -U sentence-transformers
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
```python
|
102 |
+
from sentence_transformers import SentenceTransformer
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
106 |
+
# Run inference
|
107 |
+
sentences = [
|
108 |
+
'Do you know any good methods for managing personal effectiveness?',
|
109 |
+
' "Apologies, but I am here to assist with educational inquiries only."',
|
110 |
+
' "A thermocouple measures temperature by generating a voltage based on the temperature difference between two different types of metal wires joined at one end. The voltage is proportional to the temperature difference."',
|
111 |
+
]
|
112 |
+
embeddings = model.encode(sentences)
|
113 |
+
print(embeddings.shape)
|
114 |
+
# [3, 384]
|
115 |
+
|
116 |
+
# Get the similarity scores for the embeddings
|
117 |
+
similarities = model.similarity(embeddings, embeddings)
|
118 |
+
print(similarities.shape)
|
119 |
+
# [3, 3]
|
120 |
+
```
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Direct Usage (Transformers)
|
124 |
+
|
125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
You can finetune this model on your own dataset.
|
134 |
+
|
135 |
+
<details><summary>Click to expand</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Out-of-Scope Use
|
142 |
+
|
143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
## Bias, Risks and Limitations
|
148 |
+
|
149 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Recommendations
|
154 |
+
|
155 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
## Training Details
|
159 |
+
|
160 |
+
### Training Dataset
|
161 |
+
|
162 |
+
#### Unnamed Dataset
|
163 |
+
|
164 |
+
|
165 |
+
* Size: 1,121 training samples
|
166 |
+
* Columns: <code>query</code> and <code>answer</code>
|
167 |
+
* Approximate statistics based on the first 1000 samples:
|
168 |
+
| | query | answer |
|
169 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
170 |
+
| type | string | string |
|
171 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.37 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 30.06 tokens</li><li>max: 81 tokens</li></ul> |
|
172 |
+
* Samples:
|
173 |
+
| query | answer |
|
174 |
+
|:----------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
175 |
+
| <code>Do you have any tips for managing work challenges?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
|
176 |
+
| <code>Do you have any tips for improving focus?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
|
177 |
+
| <code>What is the concept of a random walk?</code> | <code>A random walk is a stochastic process that describes a path consisting of a succession of random steps, used to model various phenomena in probability and statistics.</code> |
|
178 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
179 |
+
```json
|
180 |
+
{
|
181 |
+
"scale": 20.0,
|
182 |
+
"similarity_fct": "cos_sim"
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|
186 |
+
### Evaluation Dataset
|
187 |
+
|
188 |
+
#### Unnamed Dataset
|
189 |
+
|
190 |
+
|
191 |
+
* Size: 281 evaluation samples
|
192 |
+
* Columns: <code>query</code> and <code>answer</code>
|
193 |
+
* Approximate statistics based on the first 1000 samples:
|
194 |
+
| | query | answer |
|
195 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
196 |
+
| type | string | string |
|
197 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 30.74 tokens</li><li>max: 69 tokens</li></ul> |
|
198 |
+
* Samples:
|
199 |
+
| query | answer |
|
200 |
+
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
201 |
+
| <code>How does a thermocouple measure temperature?</code> | <code> "A thermocouple measures temperature by generating a voltage based on the temperature difference between two different types of metal wires joined at one end. The voltage is proportional to the temperature difference."</code> |
|
202 |
+
| <code>What is the concept of a Riemann-Roch theorem in algebraic geometry?</code> | <code>The Riemann-Roch theorem provides a formula for the dimension of the space of meromorphic functions on a compact Riemann surface, used in algebraic geometry.</code> |
|
203 |
+
| <code>Can you give me some relaxation tips?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
|
204 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
205 |
+
```json
|
206 |
+
{
|
207 |
+
"scale": 20.0,
|
208 |
+
"similarity_fct": "cos_sim"
|
209 |
+
}
|
210 |
+
```
|
211 |
+
|
212 |
+
### Training Hyperparameters
|
213 |
+
#### Non-Default Hyperparameters
|
214 |
+
|
215 |
+
- `eval_strategy`: epoch
|
216 |
+
- `per_device_eval_batch_size`: 16
|
217 |
+
- `learning_rate`: 3e-05
|
218 |
+
- `warmup_ratio`: 0.1
|
219 |
+
- `fp16`: True
|
220 |
+
- `load_best_model_at_end`: True
|
221 |
+
- `ddp_find_unused_parameters`: False
|
222 |
+
|
223 |
+
#### All Hyperparameters
|
224 |
+
<details><summary>Click to expand</summary>
|
225 |
+
|
226 |
+
- `overwrite_output_dir`: False
|
227 |
+
- `do_predict`: False
|
228 |
+
- `eval_strategy`: epoch
|
229 |
+
- `prediction_loss_only`: True
|
230 |
+
- `per_device_train_batch_size`: 8
|
231 |
+
- `per_device_eval_batch_size`: 16
|
232 |
+
- `per_gpu_train_batch_size`: None
|
233 |
+
- `per_gpu_eval_batch_size`: None
|
234 |
+
- `gradient_accumulation_steps`: 1
|
235 |
+
- `eval_accumulation_steps`: None
|
236 |
+
- `torch_empty_cache_steps`: None
|
237 |
+
- `learning_rate`: 3e-05
|
238 |
+
- `weight_decay`: 0.0
|
239 |
+
- `adam_beta1`: 0.9
|
240 |
+
- `adam_beta2`: 0.999
|
241 |
+
- `adam_epsilon`: 1e-08
|
242 |
+
- `max_grad_norm`: 1.0
|
243 |
+
- `num_train_epochs`: 3
|
244 |
+
- `max_steps`: -1
|
245 |
+
- `lr_scheduler_type`: linear
|
246 |
+
- `lr_scheduler_kwargs`: {}
|
247 |
+
- `warmup_ratio`: 0.1
|
248 |
+
- `warmup_steps`: 0
|
249 |
+
- `log_level`: passive
|
250 |
+
- `log_level_replica`: warning
|
251 |
+
- `log_on_each_node`: True
|
252 |
+
- `logging_nan_inf_filter`: True
|
253 |
+
- `save_safetensors`: True
|
254 |
+
- `save_on_each_node`: False
|
255 |
+
- `save_only_model`: False
|
256 |
+
- `restore_callback_states_from_checkpoint`: False
|
257 |
+
- `no_cuda`: False
|
258 |
+
- `use_cpu`: False
|
259 |
+
- `use_mps_device`: False
|
260 |
+
- `seed`: 42
|
261 |
+
- `data_seed`: None
|
262 |
+
- `jit_mode_eval`: False
|
263 |
+
- `use_ipex`: False
|
264 |
+
- `bf16`: False
|
265 |
+
- `fp16`: True
|
266 |
+
- `fp16_opt_level`: O1
|
267 |
+
- `half_precision_backend`: auto
|
268 |
+
- `bf16_full_eval`: False
|
269 |
+
- `fp16_full_eval`: False
|
270 |
+
- `tf32`: None
|
271 |
+
- `local_rank`: 0
|
272 |
+
- `ddp_backend`: None
|
273 |
+
- `tpu_num_cores`: None
|
274 |
+
- `tpu_metrics_debug`: False
|
275 |
+
- `debug`: []
|
276 |
+
- `dataloader_drop_last`: False
|
277 |
+
- `dataloader_num_workers`: 0
|
278 |
+
- `dataloader_prefetch_factor`: None
|
279 |
+
- `past_index`: -1
|
280 |
+
- `disable_tqdm`: False
|
281 |
+
- `remove_unused_columns`: True
|
282 |
+
- `label_names`: None
|
283 |
+
- `load_best_model_at_end`: True
|
284 |
+
- `ignore_data_skip`: False
|
285 |
+
- `fsdp`: []
|
286 |
+
- `fsdp_min_num_params`: 0
|
287 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
288 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
289 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
290 |
+
- `deepspeed`: None
|
291 |
+
- `label_smoothing_factor`: 0.0
|
292 |
+
- `optim`: adamw_torch
|
293 |
+
- `optim_args`: None
|
294 |
+
- `adafactor`: False
|
295 |
+
- `group_by_length`: False
|
296 |
+
- `length_column_name`: length
|
297 |
+
- `ddp_find_unused_parameters`: False
|
298 |
+
- `ddp_bucket_cap_mb`: None
|
299 |
+
- `ddp_broadcast_buffers`: False
|
300 |
+
- `dataloader_pin_memory`: True
|
301 |
+
- `dataloader_persistent_workers`: False
|
302 |
+
- `skip_memory_metrics`: True
|
303 |
+
- `use_legacy_prediction_loop`: False
|
304 |
+
- `push_to_hub`: False
|
305 |
+
- `resume_from_checkpoint`: None
|
306 |
+
- `hub_model_id`: None
|
307 |
+
- `hub_strategy`: every_save
|
308 |
+
- `hub_private_repo`: False
|
309 |
+
- `hub_always_push`: False
|
310 |
+
- `gradient_checkpointing`: False
|
311 |
+
- `gradient_checkpointing_kwargs`: None
|
312 |
+
- `include_inputs_for_metrics`: False
|
313 |
+
- `eval_do_concat_batches`: True
|
314 |
+
- `fp16_backend`: auto
|
315 |
+
- `push_to_hub_model_id`: None
|
316 |
+
- `push_to_hub_organization`: None
|
317 |
+
- `mp_parameters`:
|
318 |
+
- `auto_find_batch_size`: False
|
319 |
+
- `full_determinism`: False
|
320 |
+
- `torchdynamo`: None
|
321 |
+
- `ray_scope`: last
|
322 |
+
- `ddp_timeout`: 1800
|
323 |
+
- `torch_compile`: False
|
324 |
+
- `torch_compile_backend`: None
|
325 |
+
- `torch_compile_mode`: None
|
326 |
+
- `dispatch_batches`: None
|
327 |
+
- `split_batches`: None
|
328 |
+
- `include_tokens_per_second`: False
|
329 |
+
- `include_num_input_tokens_seen`: False
|
330 |
+
- `neftune_noise_alpha`: None
|
331 |
+
- `optim_target_modules`: None
|
332 |
+
- `batch_eval_metrics`: False
|
333 |
+
- `eval_on_start`: False
|
334 |
+
- `eval_use_gather_object`: False
|
335 |
+
- `batch_sampler`: batch_sampler
|
336 |
+
- `multi_dataset_batch_sampler`: proportional
|
337 |
+
|
338 |
+
</details>
|
339 |
+
|
340 |
+
### Training Logs
|
341 |
+
| Epoch | Step | Training Loss | loss |
|
342 |
+
|:------:|:----:|:-------------:|:------:|
|
343 |
+
| 0.1773 | 25 | 0.4901 | - |
|
344 |
+
| 0.3546 | 50 | 0.2825 | - |
|
345 |
+
| 0.5319 | 75 | 0.2687 | - |
|
346 |
+
| 0.7092 | 100 | 0.3781 | - |
|
347 |
+
| 0.8865 | 125 | 0.2871 | - |
|
348 |
+
| 1.0 | 141 | - | 0.3310 |
|
349 |
+
| 1.0638 | 150 | 0.2355 | - |
|
350 |
+
| 1.2411 | 175 | 0.3316 | - |
|
351 |
+
| 1.4184 | 200 | 0.2709 | - |
|
352 |
+
| 1.5957 | 225 | 0.1992 | - |
|
353 |
+
| 1.7730 | 250 | 0.3492 | - |
|
354 |
+
| 1.9504 | 275 | 0.3475 | - |
|
355 |
+
| 2.0 | 282 | - | 0.3293 |
|
356 |
+
| 2.1277 | 300 | 0.2507 | - |
|
357 |
+
| 2.3050 | 325 | 0.211 | - |
|
358 |
+
| 2.4823 | 350 | 0.3757 | - |
|
359 |
+
| 2.6596 | 375 | 0.3035 | - |
|
360 |
+
| 2.8369 | 400 | 0.3962 | - |
|
361 |
+
| 3.0 | 423 | - | 0.3289 |
|
362 |
+
|
363 |
+
|
364 |
+
### Framework Versions
|
365 |
+
- Python: 3.10.14
|
366 |
+
- Sentence Transformers: 3.0.1
|
367 |
+
- Transformers: 4.44.1
|
368 |
+
- PyTorch: 2.3.0
|
369 |
+
- Accelerate: 0.33.0
|
370 |
+
- Datasets: 2.19.1
|
371 |
+
- Tokenizers: 0.19.1
|
372 |
+
|
373 |
+
## Citation
|
374 |
+
|
375 |
+
### BibTeX
|
376 |
+
|
377 |
+
#### Sentence Transformers
|
378 |
+
```bibtex
|
379 |
+
@inproceedings{reimers-2019-sentence-bert,
|
380 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
381 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
382 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
383 |
+
month = "11",
|
384 |
+
year = "2019",
|
385 |
+
publisher = "Association for Computational Linguistics",
|
386 |
+
url = "https://arxiv.org/abs/1908.10084",
|
387 |
+
}
|
388 |
+
```
|
389 |
+
|
390 |
+
#### MultipleNegativesRankingLoss
|
391 |
+
```bibtex
|
392 |
+
@misc{henderson2017efficient,
|
393 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
394 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
395 |
+
year={2017},
|
396 |
+
eprint={1705.00652},
|
397 |
+
archivePrefix={arXiv},
|
398 |
+
primaryClass={cs.CL}
|
399 |
+
}
|
400 |
+
```
|
401 |
+
|
402 |
+
<!--
|
403 |
+
## Glossary
|
404 |
+
|
405 |
+
*Clearly define terms in order to be accessible across audiences.*
|
406 |
+
-->
|
407 |
+
|
408 |
+
<!--
|
409 |
+
## Model Card Authors
|
410 |
+
|
411 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
412 |
+
-->
|
413 |
+
|
414 |
+
<!--
|
415 |
+
## Model Card Contact
|
416 |
+
|
417 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
418 |
+
-->
|
checkpoint-423/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
checkpoint-423/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.1",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-423/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc3e6d655def43bcf55caf68e3176950b4f2b5021848ffb9a4b1d9e4c106cba
|
3 |
+
size 90864192
|
checkpoint-423/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoint-423/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851d095870e81f9746d2e84ce6649f644c3c66f63b44fea0660fb992c9f104bf
|
3 |
+
size 180604922
|
checkpoint-423/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b06c82bde450a476f3e060cbc84f404dcbcdf641b1310128df2cf190e982c031
|
3 |
+
size 13990
|
checkpoint-423/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c34935ec2040c5dd274ca578d0c6c5dafbdbca644f8eed3debe650c915fa910
|
3 |
+
size 1064
|
checkpoint-423/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-423/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
checkpoint-423/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-423/tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
checkpoint-423/trainer_state.json
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.3288682699203491,
|
3 |
+
"best_model_checkpoint": "autotrain-c52ub-jeg6j/checkpoint-423",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 423,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.1773049645390071,
|
13 |
+
"grad_norm": 10.350419998168945,
|
14 |
+
"learning_rate": 1.744186046511628e-05,
|
15 |
+
"loss": 0.4901,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.3546099290780142,
|
20 |
+
"grad_norm": 0.007141428533941507,
|
21 |
+
"learning_rate": 2.9447368421052635e-05,
|
22 |
+
"loss": 0.2825,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.5319148936170213,
|
27 |
+
"grad_norm": 0.008493046276271343,
|
28 |
+
"learning_rate": 2.7473684210526316e-05,
|
29 |
+
"loss": 0.2687,
|
30 |
+
"step": 75
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.7092198581560284,
|
34 |
+
"grad_norm": 6.791988849639893,
|
35 |
+
"learning_rate": 2.55e-05,
|
36 |
+
"loss": 0.3781,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.8865248226950354,
|
41 |
+
"grad_norm": 0.05575500801205635,
|
42 |
+
"learning_rate": 2.3526315789473684e-05,
|
43 |
+
"loss": 0.2871,
|
44 |
+
"step": 125
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 1.0,
|
48 |
+
"eval_loss": 0.33098626136779785,
|
49 |
+
"eval_runtime": 5.0254,
|
50 |
+
"eval_samples_per_second": 55.916,
|
51 |
+
"eval_steps_per_second": 3.582,
|
52 |
+
"step": 141
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 1.0638297872340425,
|
56 |
+
"grad_norm": 0.002311188029125333,
|
57 |
+
"learning_rate": 2.155263157894737e-05,
|
58 |
+
"loss": 0.2355,
|
59 |
+
"step": 150
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 1.2411347517730495,
|
63 |
+
"grad_norm": 4.408796787261963,
|
64 |
+
"learning_rate": 1.9578947368421055e-05,
|
65 |
+
"loss": 0.3316,
|
66 |
+
"step": 175
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 1.4184397163120568,
|
70 |
+
"grad_norm": 3.096693754196167,
|
71 |
+
"learning_rate": 1.760526315789474e-05,
|
72 |
+
"loss": 0.2709,
|
73 |
+
"step": 200
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 1.5957446808510638,
|
77 |
+
"grad_norm": 0.015605694614350796,
|
78 |
+
"learning_rate": 1.563157894736842e-05,
|
79 |
+
"loss": 0.1992,
|
80 |
+
"step": 225
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.773049645390071,
|
84 |
+
"grad_norm": 13.529268264770508,
|
85 |
+
"learning_rate": 1.3657894736842106e-05,
|
86 |
+
"loss": 0.3492,
|
87 |
+
"step": 250
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 1.950354609929078,
|
91 |
+
"grad_norm": 2.289918899536133,
|
92 |
+
"learning_rate": 1.168421052631579e-05,
|
93 |
+
"loss": 0.3475,
|
94 |
+
"step": 275
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 2.0,
|
98 |
+
"eval_loss": 0.3292754292488098,
|
99 |
+
"eval_runtime": 4.8075,
|
100 |
+
"eval_samples_per_second": 58.451,
|
101 |
+
"eval_steps_per_second": 3.744,
|
102 |
+
"step": 282
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 2.127659574468085,
|
106 |
+
"grad_norm": 7.50461483001709,
|
107 |
+
"learning_rate": 9.710526315789474e-06,
|
108 |
+
"loss": 0.2507,
|
109 |
+
"step": 300
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 2.3049645390070923,
|
113 |
+
"grad_norm": 2.744440793991089,
|
114 |
+
"learning_rate": 7.73684210526316e-06,
|
115 |
+
"loss": 0.211,
|
116 |
+
"step": 325
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 2.482269503546099,
|
120 |
+
"grad_norm": 4.163485527038574,
|
121 |
+
"learning_rate": 5.763157894736842e-06,
|
122 |
+
"loss": 0.3757,
|
123 |
+
"step": 350
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 2.6595744680851063,
|
127 |
+
"grad_norm": 2.690004825592041,
|
128 |
+
"learning_rate": 3.7894736842105264e-06,
|
129 |
+
"loss": 0.3035,
|
130 |
+
"step": 375
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 2.8368794326241136,
|
134 |
+
"grad_norm": 3.5211398601531982,
|
135 |
+
"learning_rate": 1.8157894736842106e-06,
|
136 |
+
"loss": 0.3962,
|
137 |
+
"step": 400
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 3.0,
|
141 |
+
"eval_loss": 0.3288682699203491,
|
142 |
+
"eval_runtime": 6.1183,
|
143 |
+
"eval_samples_per_second": 45.928,
|
144 |
+
"eval_steps_per_second": 2.942,
|
145 |
+
"step": 423
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"logging_steps": 25,
|
149 |
+
"max_steps": 423,
|
150 |
+
"num_input_tokens_seen": 0,
|
151 |
+
"num_train_epochs": 3,
|
152 |
+
"save_steps": 500,
|
153 |
+
"stateful_callbacks": {
|
154 |
+
"EarlyStoppingCallback": {
|
155 |
+
"args": {
|
156 |
+
"early_stopping_patience": 5,
|
157 |
+
"early_stopping_threshold": 0.01
|
158 |
+
},
|
159 |
+
"attributes": {
|
160 |
+
"early_stopping_patience_counter": 0
|
161 |
+
}
|
162 |
+
},
|
163 |
+
"TrainerControl": {
|
164 |
+
"args": {
|
165 |
+
"should_epoch_stop": false,
|
166 |
+
"should_evaluate": false,
|
167 |
+
"should_log": false,
|
168 |
+
"should_save": true,
|
169 |
+
"should_training_stop": true
|
170 |
+
},
|
171 |
+
"attributes": {}
|
172 |
+
}
|
173 |
+
},
|
174 |
+
"total_flos": 0.0,
|
175 |
+
"train_batch_size": 8,
|
176 |
+
"trial_name": null,
|
177 |
+
"trial_params": null
|
178 |
+
}
|
checkpoint-423/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0a9223efab4d2b86f2b098208c3767b5c70709873adbcad02dfb553fe0e5aba
|
3 |
+
size 5432
|
checkpoint-423/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.1",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc3e6d655def43bcf55caf68e3176950b4f2b5021848ffb9a4b1d9e4c106cba
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320234.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3974027e7e6801d1666375eb5f46d92728370820a994e71b4b09ab99e621a4f1
|
3 |
+
size 8825
|
runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320552.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be89f47468096d023be91410dd126489332e6a568d57d18d1df710ddd30c3fe4
|
3 |
+
size 359
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0a9223efab4d2b86f2b098208c3767b5c70709873adbcad02dfb553fe0e5aba
|
3 |
+
size 5432
|
training_params.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_path": "autotrain-c52ub-jeg6j/autotrain-data",
|
3 |
+
"model": "sentence-transformers/all-MiniLM-L6-v2",
|
4 |
+
"lr": 3e-05,
|
5 |
+
"epochs": 3,
|
6 |
+
"max_seq_length": 128,
|
7 |
+
"batch_size": 8,
|
8 |
+
"warmup_ratio": 0.1,
|
9 |
+
"gradient_accumulation": 1,
|
10 |
+
"optimizer": "adamw_torch",
|
11 |
+
"scheduler": "linear",
|
12 |
+
"weight_decay": 0.0,
|
13 |
+
"max_grad_norm": 1.0,
|
14 |
+
"seed": 42,
|
15 |
+
"train_split": "train",
|
16 |
+
"valid_split": "validation",
|
17 |
+
"logging_steps": -1,
|
18 |
+
"project_name": "autotrain-c52ub-jeg6j",
|
19 |
+
"auto_find_batch_size": false,
|
20 |
+
"mixed_precision": "fp16",
|
21 |
+
"save_total_limit": 1,
|
22 |
+
"push_to_hub": true,
|
23 |
+
"eval_strategy": "epoch",
|
24 |
+
"username": "mudassir734",
|
25 |
+
"log": "tensorboard",
|
26 |
+
"early_stopping_patience": 5,
|
27 |
+
"early_stopping_threshold": 0.01,
|
28 |
+
"trainer": "qa",
|
29 |
+
"sentence1_column": "autotrain_sentence1",
|
30 |
+
"sentence2_column": "autotrain_sentence2",
|
31 |
+
"sentence3_column": "autotrain_sentence3",
|
32 |
+
"target_column": "autotrain_target"
|
33 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|