mudassir734 commited on
Commit
78b3056
1 Parent(s): cd9b559

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.3288682699203491
25
+
26
+ runtime: 6.5691
27
+
28
+ samples_per_second: 42.776
29
+
30
+ steps_per_second: 2.74
31
+
32
+ : 3.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-423/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-423/README.md ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:1121
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: How is DNA used in forensic science?
16
+ sentences:
17
+ - 'Cellular respiration consists of three main stages: glycolysis, the Krebs cycle
18
+ (citric acid cycle), and the electron transport chain.'
19
+ - DNA is used in forensic science to identify individuals and establish connections
20
+ between suspects and crime scenes through DNA profiling. It provides unique genetic
21
+ information that can match evidence with individuals.
22
+ - ' "Apologies, but I am here to assist with educational inquiries only."'
23
+ - source_sentence: Which star is closest to Earth?
24
+ sentences:
25
+ - ' "A digital thermometer measures temperature by using electronic sensors, such
26
+ as thermistors or thermocouples, which change their resistance or voltage in response
27
+ to temperature changes. The thermometer then converts these readings into a digital
28
+ display."'
29
+ - The closest star to Earth, other than the Sun, is Proxima Centauri.
30
+ - ' "Apologies, but I am here to assist with educational inquiries only."'
31
+ - source_sentence: What is the significance of the concept of an interpolation method?
32
+ sentences:
33
+ - Eigenvalue decomposition is a method of breaking down a matrix into its eigenvalues
34
+ and eigenvectors, used in linear algebra to analyze and simplify matrix operations.
35
+ - Enzymes are biological catalysts that speed up chemical reactions in living organisms
36
+ by lowering the activation energy required for the reactions to occur. They are
37
+ crucial for processes such as digestion, metabolism, and cellular functions.
38
+ - An interpolation method is a technique used to estimate values between known data
39
+ points, used in numerical analysis and data fitting to approximate functions and
40
+ curves.
41
+ - source_sentence: What is the concept of a Differential Form in calculus?
42
+ sentences:
43
+ - ' "Apologies, but I am here to assist with educational inquiries only."'
44
+ - ' "Apologies, but I am here to assist with educational inquiries only."'
45
+ - A differential form is a mathematical object that generalizes functions and vectors,
46
+ used in multivariable calculus and differential geometry.
47
+ - source_sentence: Do you know any good methods for managing personal effectiveness?
48
+ sentences:
49
+ - ' "Apologies, but I am here to assist with educational inquiries only."'
50
+ - ' "A thermocouple measures temperature by generating a voltage based on the temperature
51
+ difference between two different types of metal wires joined at one end. The voltage
52
+ is proportional to the temperature difference."'
53
+ - A principal component is a direction in which the data varies the most, used in
54
+ principal component analysis to reduce dimensionality and identify key features
55
+ in the data.
56
+ ---
57
+
58
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
59
+
60
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+ - **Model Type:** Sentence Transformer
66
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
67
+ - **Maximum Sequence Length:** 256 tokens
68
+ - **Output Dimensionality:** 384 tokens
69
+ - **Similarity Function:** Cosine Similarity
70
+ <!-- - **Training Dataset:** Unknown -->
71
+ <!-- - **Language:** Unknown -->
72
+ <!-- - **License:** Unknown -->
73
+
74
+ ### Model Sources
75
+
76
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
77
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
78
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
79
+
80
+ ### Full Model Architecture
81
+
82
+ ```
83
+ SentenceTransformer(
84
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
85
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
86
+ (2): Normalize()
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Do you know any good methods for managing personal effectiveness?',
109
+ ' "Apologies, but I am here to assist with educational inquiries only."',
110
+ ' "A thermocouple measures temperature by generating a voltage based on the temperature difference between two different types of metal wires joined at one end. The voltage is proportional to the temperature difference."',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### Unnamed Dataset
163
+
164
+
165
+ * Size: 1,121 training samples
166
+ * Columns: <code>query</code> and <code>answer</code>
167
+ * Approximate statistics based on the first 1000 samples:
168
+ | | query | answer |
169
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
170
+ | type | string | string |
171
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.37 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 30.06 tokens</li><li>max: 81 tokens</li></ul> |
172
+ * Samples:
173
+ | query | answer |
174
+ |:----------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
175
+ | <code>Do you have any tips for managing work challenges?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
176
+ | <code>Do you have any tips for improving focus?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
177
+ | <code>What is the concept of a random walk?</code> | <code>A random walk is a stochastic process that describes a path consisting of a succession of random steps, used to model various phenomena in probability and statistics.</code> |
178
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
179
+ ```json
180
+ {
181
+ "scale": 20.0,
182
+ "similarity_fct": "cos_sim"
183
+ }
184
+ ```
185
+
186
+ ### Evaluation Dataset
187
+
188
+ #### Unnamed Dataset
189
+
190
+
191
+ * Size: 281 evaluation samples
192
+ * Columns: <code>query</code> and <code>answer</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | query | answer |
195
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
196
+ | type | string | string |
197
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 30.74 tokens</li><li>max: 69 tokens</li></ul> |
198
+ * Samples:
199
+ | query | answer |
200
+ |:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
201
+ | <code>How does a thermocouple measure temperature?</code> | <code> "A thermocouple measures temperature by generating a voltage based on the temperature difference between two different types of metal wires joined at one end. The voltage is proportional to the temperature difference."</code> |
202
+ | <code>What is the concept of a Riemann-Roch theorem in algebraic geometry?</code> | <code>The Riemann-Roch theorem provides a formula for the dimension of the space of meromorphic functions on a compact Riemann surface, used in algebraic geometry.</code> |
203
+ | <code>Can you give me some relaxation tips?</code> | <code> "Apologies, but I am here to assist with educational inquiries only."</code> |
204
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
205
+ ```json
206
+ {
207
+ "scale": 20.0,
208
+ "similarity_fct": "cos_sim"
209
+ }
210
+ ```
211
+
212
+ ### Training Hyperparameters
213
+ #### Non-Default Hyperparameters
214
+
215
+ - `eval_strategy`: epoch
216
+ - `per_device_eval_batch_size`: 16
217
+ - `learning_rate`: 3e-05
218
+ - `warmup_ratio`: 0.1
219
+ - `fp16`: True
220
+ - `load_best_model_at_end`: True
221
+ - `ddp_find_unused_parameters`: False
222
+
223
+ #### All Hyperparameters
224
+ <details><summary>Click to expand</summary>
225
+
226
+ - `overwrite_output_dir`: False
227
+ - `do_predict`: False
228
+ - `eval_strategy`: epoch
229
+ - `prediction_loss_only`: True
230
+ - `per_device_train_batch_size`: 8
231
+ - `per_device_eval_batch_size`: 16
232
+ - `per_gpu_train_batch_size`: None
233
+ - `per_gpu_eval_batch_size`: None
234
+ - `gradient_accumulation_steps`: 1
235
+ - `eval_accumulation_steps`: None
236
+ - `torch_empty_cache_steps`: None
237
+ - `learning_rate`: 3e-05
238
+ - `weight_decay`: 0.0
239
+ - `adam_beta1`: 0.9
240
+ - `adam_beta2`: 0.999
241
+ - `adam_epsilon`: 1e-08
242
+ - `max_grad_norm`: 1.0
243
+ - `num_train_epochs`: 3
244
+ - `max_steps`: -1
245
+ - `lr_scheduler_type`: linear
246
+ - `lr_scheduler_kwargs`: {}
247
+ - `warmup_ratio`: 0.1
248
+ - `warmup_steps`: 0
249
+ - `log_level`: passive
250
+ - `log_level_replica`: warning
251
+ - `log_on_each_node`: True
252
+ - `logging_nan_inf_filter`: True
253
+ - `save_safetensors`: True
254
+ - `save_on_each_node`: False
255
+ - `save_only_model`: False
256
+ - `restore_callback_states_from_checkpoint`: False
257
+ - `no_cuda`: False
258
+ - `use_cpu`: False
259
+ - `use_mps_device`: False
260
+ - `seed`: 42
261
+ - `data_seed`: None
262
+ - `jit_mode_eval`: False
263
+ - `use_ipex`: False
264
+ - `bf16`: False
265
+ - `fp16`: True
266
+ - `fp16_opt_level`: O1
267
+ - `half_precision_backend`: auto
268
+ - `bf16_full_eval`: False
269
+ - `fp16_full_eval`: False
270
+ - `tf32`: None
271
+ - `local_rank`: 0
272
+ - `ddp_backend`: None
273
+ - `tpu_num_cores`: None
274
+ - `tpu_metrics_debug`: False
275
+ - `debug`: []
276
+ - `dataloader_drop_last`: False
277
+ - `dataloader_num_workers`: 0
278
+ - `dataloader_prefetch_factor`: None
279
+ - `past_index`: -1
280
+ - `disable_tqdm`: False
281
+ - `remove_unused_columns`: True
282
+ - `label_names`: None
283
+ - `load_best_model_at_end`: True
284
+ - `ignore_data_skip`: False
285
+ - `fsdp`: []
286
+ - `fsdp_min_num_params`: 0
287
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
288
+ - `fsdp_transformer_layer_cls_to_wrap`: None
289
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
290
+ - `deepspeed`: None
291
+ - `label_smoothing_factor`: 0.0
292
+ - `optim`: adamw_torch
293
+ - `optim_args`: None
294
+ - `adafactor`: False
295
+ - `group_by_length`: False
296
+ - `length_column_name`: length
297
+ - `ddp_find_unused_parameters`: False
298
+ - `ddp_bucket_cap_mb`: None
299
+ - `ddp_broadcast_buffers`: False
300
+ - `dataloader_pin_memory`: True
301
+ - `dataloader_persistent_workers`: False
302
+ - `skip_memory_metrics`: True
303
+ - `use_legacy_prediction_loop`: False
304
+ - `push_to_hub`: False
305
+ - `resume_from_checkpoint`: None
306
+ - `hub_model_id`: None
307
+ - `hub_strategy`: every_save
308
+ - `hub_private_repo`: False
309
+ - `hub_always_push`: False
310
+ - `gradient_checkpointing`: False
311
+ - `gradient_checkpointing_kwargs`: None
312
+ - `include_inputs_for_metrics`: False
313
+ - `eval_do_concat_batches`: True
314
+ - `fp16_backend`: auto
315
+ - `push_to_hub_model_id`: None
316
+ - `push_to_hub_organization`: None
317
+ - `mp_parameters`:
318
+ - `auto_find_batch_size`: False
319
+ - `full_determinism`: False
320
+ - `torchdynamo`: None
321
+ - `ray_scope`: last
322
+ - `ddp_timeout`: 1800
323
+ - `torch_compile`: False
324
+ - `torch_compile_backend`: None
325
+ - `torch_compile_mode`: None
326
+ - `dispatch_batches`: None
327
+ - `split_batches`: None
328
+ - `include_tokens_per_second`: False
329
+ - `include_num_input_tokens_seen`: False
330
+ - `neftune_noise_alpha`: None
331
+ - `optim_target_modules`: None
332
+ - `batch_eval_metrics`: False
333
+ - `eval_on_start`: False
334
+ - `eval_use_gather_object`: False
335
+ - `batch_sampler`: batch_sampler
336
+ - `multi_dataset_batch_sampler`: proportional
337
+
338
+ </details>
339
+
340
+ ### Training Logs
341
+ | Epoch | Step | Training Loss | loss |
342
+ |:------:|:----:|:-------------:|:------:|
343
+ | 0.1773 | 25 | 0.4901 | - |
344
+ | 0.3546 | 50 | 0.2825 | - |
345
+ | 0.5319 | 75 | 0.2687 | - |
346
+ | 0.7092 | 100 | 0.3781 | - |
347
+ | 0.8865 | 125 | 0.2871 | - |
348
+ | 1.0 | 141 | - | 0.3310 |
349
+ | 1.0638 | 150 | 0.2355 | - |
350
+ | 1.2411 | 175 | 0.3316 | - |
351
+ | 1.4184 | 200 | 0.2709 | - |
352
+ | 1.5957 | 225 | 0.1992 | - |
353
+ | 1.7730 | 250 | 0.3492 | - |
354
+ | 1.9504 | 275 | 0.3475 | - |
355
+ | 2.0 | 282 | - | 0.3293 |
356
+ | 2.1277 | 300 | 0.2507 | - |
357
+ | 2.3050 | 325 | 0.211 | - |
358
+ | 2.4823 | 350 | 0.3757 | - |
359
+ | 2.6596 | 375 | 0.3035 | - |
360
+ | 2.8369 | 400 | 0.3962 | - |
361
+ | 3.0 | 423 | - | 0.3289 |
362
+
363
+
364
+ ### Framework Versions
365
+ - Python: 3.10.14
366
+ - Sentence Transformers: 3.0.1
367
+ - Transformers: 4.44.1
368
+ - PyTorch: 2.3.0
369
+ - Accelerate: 0.33.0
370
+ - Datasets: 2.19.1
371
+ - Tokenizers: 0.19.1
372
+
373
+ ## Citation
374
+
375
+ ### BibTeX
376
+
377
+ #### Sentence Transformers
378
+ ```bibtex
379
+ @inproceedings{reimers-2019-sentence-bert,
380
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
381
+ author = "Reimers, Nils and Gurevych, Iryna",
382
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
383
+ month = "11",
384
+ year = "2019",
385
+ publisher = "Association for Computational Linguistics",
386
+ url = "https://arxiv.org/abs/1908.10084",
387
+ }
388
+ ```
389
+
390
+ #### MultipleNegativesRankingLoss
391
+ ```bibtex
392
+ @misc{henderson2017efficient,
393
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
394
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
395
+ year={2017},
396
+ eprint={1705.00652},
397
+ archivePrefix={arXiv},
398
+ primaryClass={cs.CL}
399
+ }
400
+ ```
401
+
402
+ <!--
403
+ ## Glossary
404
+
405
+ *Clearly define terms in order to be accessible across audiences.*
406
+ -->
407
+
408
+ <!--
409
+ ## Model Card Authors
410
+
411
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
412
+ -->
413
+
414
+ <!--
415
+ ## Model Card Contact
416
+
417
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
418
+ -->
checkpoint-423/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-423/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.1",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-423/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc3e6d655def43bcf55caf68e3176950b4f2b5021848ffb9a4b1d9e4c106cba
3
+ size 90864192
checkpoint-423/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-423/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:851d095870e81f9746d2e84ce6649f644c3c66f63b44fea0660fb992c9f104bf
3
+ size 180604922
checkpoint-423/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b06c82bde450a476f3e060cbc84f404dcbcdf641b1310128df2cf190e982c031
3
+ size 13990
checkpoint-423/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c34935ec2040c5dd274ca578d0c6c5dafbdbca644f8eed3debe650c915fa910
3
+ size 1064
checkpoint-423/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-423/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-423/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-423/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
checkpoint-423/trainer_state.json ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.3288682699203491,
3
+ "best_model_checkpoint": "autotrain-c52ub-jeg6j/checkpoint-423",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 423,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1773049645390071,
13
+ "grad_norm": 10.350419998168945,
14
+ "learning_rate": 1.744186046511628e-05,
15
+ "loss": 0.4901,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.3546099290780142,
20
+ "grad_norm": 0.007141428533941507,
21
+ "learning_rate": 2.9447368421052635e-05,
22
+ "loss": 0.2825,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.5319148936170213,
27
+ "grad_norm": 0.008493046276271343,
28
+ "learning_rate": 2.7473684210526316e-05,
29
+ "loss": 0.2687,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.7092198581560284,
34
+ "grad_norm": 6.791988849639893,
35
+ "learning_rate": 2.55e-05,
36
+ "loss": 0.3781,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.8865248226950354,
41
+ "grad_norm": 0.05575500801205635,
42
+ "learning_rate": 2.3526315789473684e-05,
43
+ "loss": 0.2871,
44
+ "step": 125
45
+ },
46
+ {
47
+ "epoch": 1.0,
48
+ "eval_loss": 0.33098626136779785,
49
+ "eval_runtime": 5.0254,
50
+ "eval_samples_per_second": 55.916,
51
+ "eval_steps_per_second": 3.582,
52
+ "step": 141
53
+ },
54
+ {
55
+ "epoch": 1.0638297872340425,
56
+ "grad_norm": 0.002311188029125333,
57
+ "learning_rate": 2.155263157894737e-05,
58
+ "loss": 0.2355,
59
+ "step": 150
60
+ },
61
+ {
62
+ "epoch": 1.2411347517730495,
63
+ "grad_norm": 4.408796787261963,
64
+ "learning_rate": 1.9578947368421055e-05,
65
+ "loss": 0.3316,
66
+ "step": 175
67
+ },
68
+ {
69
+ "epoch": 1.4184397163120568,
70
+ "grad_norm": 3.096693754196167,
71
+ "learning_rate": 1.760526315789474e-05,
72
+ "loss": 0.2709,
73
+ "step": 200
74
+ },
75
+ {
76
+ "epoch": 1.5957446808510638,
77
+ "grad_norm": 0.015605694614350796,
78
+ "learning_rate": 1.563157894736842e-05,
79
+ "loss": 0.1992,
80
+ "step": 225
81
+ },
82
+ {
83
+ "epoch": 1.773049645390071,
84
+ "grad_norm": 13.529268264770508,
85
+ "learning_rate": 1.3657894736842106e-05,
86
+ "loss": 0.3492,
87
+ "step": 250
88
+ },
89
+ {
90
+ "epoch": 1.950354609929078,
91
+ "grad_norm": 2.289918899536133,
92
+ "learning_rate": 1.168421052631579e-05,
93
+ "loss": 0.3475,
94
+ "step": 275
95
+ },
96
+ {
97
+ "epoch": 2.0,
98
+ "eval_loss": 0.3292754292488098,
99
+ "eval_runtime": 4.8075,
100
+ "eval_samples_per_second": 58.451,
101
+ "eval_steps_per_second": 3.744,
102
+ "step": 282
103
+ },
104
+ {
105
+ "epoch": 2.127659574468085,
106
+ "grad_norm": 7.50461483001709,
107
+ "learning_rate": 9.710526315789474e-06,
108
+ "loss": 0.2507,
109
+ "step": 300
110
+ },
111
+ {
112
+ "epoch": 2.3049645390070923,
113
+ "grad_norm": 2.744440793991089,
114
+ "learning_rate": 7.73684210526316e-06,
115
+ "loss": 0.211,
116
+ "step": 325
117
+ },
118
+ {
119
+ "epoch": 2.482269503546099,
120
+ "grad_norm": 4.163485527038574,
121
+ "learning_rate": 5.763157894736842e-06,
122
+ "loss": 0.3757,
123
+ "step": 350
124
+ },
125
+ {
126
+ "epoch": 2.6595744680851063,
127
+ "grad_norm": 2.690004825592041,
128
+ "learning_rate": 3.7894736842105264e-06,
129
+ "loss": 0.3035,
130
+ "step": 375
131
+ },
132
+ {
133
+ "epoch": 2.8368794326241136,
134
+ "grad_norm": 3.5211398601531982,
135
+ "learning_rate": 1.8157894736842106e-06,
136
+ "loss": 0.3962,
137
+ "step": 400
138
+ },
139
+ {
140
+ "epoch": 3.0,
141
+ "eval_loss": 0.3288682699203491,
142
+ "eval_runtime": 6.1183,
143
+ "eval_samples_per_second": 45.928,
144
+ "eval_steps_per_second": 2.942,
145
+ "step": 423
146
+ }
147
+ ],
148
+ "logging_steps": 25,
149
+ "max_steps": 423,
150
+ "num_input_tokens_seen": 0,
151
+ "num_train_epochs": 3,
152
+ "save_steps": 500,
153
+ "stateful_callbacks": {
154
+ "EarlyStoppingCallback": {
155
+ "args": {
156
+ "early_stopping_patience": 5,
157
+ "early_stopping_threshold": 0.01
158
+ },
159
+ "attributes": {
160
+ "early_stopping_patience_counter": 0
161
+ }
162
+ },
163
+ "TrainerControl": {
164
+ "args": {
165
+ "should_epoch_stop": false,
166
+ "should_evaluate": false,
167
+ "should_log": false,
168
+ "should_save": true,
169
+ "should_training_stop": true
170
+ },
171
+ "attributes": {}
172
+ }
173
+ },
174
+ "total_flos": 0.0,
175
+ "train_batch_size": 8,
176
+ "trial_name": null,
177
+ "trial_params": null
178
+ }
checkpoint-423/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0a9223efab4d2b86f2b098208c3767b5c70709873adbcad02dfb553fe0e5aba
3
+ size 5432
checkpoint-423/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.1",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc3e6d655def43bcf55caf68e3176950b4f2b5021848ffb9a4b1d9e4c106cba
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320234.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c6a96e98c2ee5783c1093bf3345f911750eeeb721104e23ef7f1bdff537eb0b
3
- size 4302
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3974027e7e6801d1666375eb5f46d92728370820a994e71b4b09ab99e621a4f1
3
+ size 8825
runs/Aug22_09-50-32_r-mudassir734-edubot-iybhdv6d-00136-t3nz6/events.out.tfevents.1724320552.r-mudassir734-edubot-iybhdv6d-00136-t3nz6.112.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be89f47468096d023be91410dd126489332e6a568d57d18d1df710ddd30c3fe4
3
+ size 359
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0a9223efab4d2b86f2b098208c3767b5c70709873adbcad02dfb553fe0e5aba
3
+ size 5432
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-c52ub-jeg6j/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-c52ub-jeg6j",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "mudassir734",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "qa",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff