muhammadbilal
commited on
Commit
•
bd5e992
1
Parent(s):
e5f0d66
update model card README.md
Browse files
README.md
CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# xlm-roberta-base-finetuned-pos
|
19 |
|
20 |
-
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,27 +48,20 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.1651 | 4.0 | 1828 | 0.4374 | 0.8885 | 0.9030 | 0.8957 | 0.8870 |
|
61 |
-
| 0.1265 | 5.0 | 2285 | 0.4622 | 0.8923 | 0.9068 | 0.8995 | 0.8912 |
|
62 |
-
| 0.1036 | 6.0 | 2742 | 0.4752 | 0.8962 | 0.9088 | 0.9025 | 0.8946 |
|
63 |
-
| 0.0806 | 7.0 | 3199 | 0.5058 | 0.8950 | 0.9093 | 0.9020 | 0.8933 |
|
64 |
-
| 0.0727 | 8.0 | 3656 | 0.5232 | 0.8996 | 0.9123 | 0.9059 | 0.8976 |
|
65 |
-
| 0.0603 | 9.0 | 4113 | 0.5360 | 0.8970 | 0.9106 | 0.9037 | 0.8952 |
|
66 |
-
| 0.0548 | 10.0 | 4570 | 0.5350 | 0.8992 | 0.9129 | 0.9060 | 0.8979 |
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
- Transformers 4.27.1
|
72 |
-
- Pytorch
|
73 |
- Datasets 2.10.1
|
74 |
- Tokenizers 0.13.2
|
|
|
17 |
|
18 |
# xlm-roberta-base-finetuned-pos
|
19 |
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0221
|
23 |
+
- Precision: 0.9948
|
24 |
+
- Recall: 0.9953
|
25 |
+
- F1: 0.9951
|
26 |
+
- Accuracy: 0.9957
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 3
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0343 | 1.0 | 2111 | 0.0226 | 0.9941 | 0.9941 | 0.9941 | 0.9949 |
|
58 |
+
| 0.0205 | 2.0 | 4222 | 0.0230 | 0.9951 | 0.9950 | 0.9951 | 0.9955 |
|
59 |
+
| 0.0137 | 3.0 | 6333 | 0.0221 | 0.9948 | 0.9953 | 0.9951 | 0.9957 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
- Transformers 4.27.1
|
65 |
+
- Pytorch 1.13.1+cu116
|
66 |
- Datasets 2.10.1
|
67 |
- Tokenizers 0.13.2
|