--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-pos results: [] --- # xlm-roberta-base-finetuned-pos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0683 - Precision: 0.9800 - Recall: 0.9819 - F1: 0.9809 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1542 | 1.0 | 1583 | 0.1251 | 0.9526 | 0.9613 | 0.9569 | 0.9622 | | 0.0953 | 2.0 | 3166 | 0.0813 | 0.9725 | 0.9750 | 0.9737 | 0.9763 | | 0.0694 | 3.0 | 4749 | 0.0707 | 0.9765 | 0.9792 | 0.9778 | 0.9797 | | 0.0497 | 4.0 | 6332 | 0.0684 | 0.9784 | 0.9809 | 0.9796 | 0.9814 | | 0.0435 | 5.0 | 7915 | 0.0683 | 0.9800 | 0.9819 | 0.9809 | 0.9822 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3