--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-pos results: [] --- # xlm-roberta-base-finetuned-pos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0827 - Precision: 0.9738 - Recall: 0.9748 - F1: 0.9743 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1627 | 1.0 | 1583 | 0.1273 | 0.9584 | 0.9619 | 0.9601 | 0.9641 | | 0.0984 | 2.0 | 3166 | 0.0909 | 0.9704 | 0.9722 | 0.9713 | 0.9743 | | 0.0747 | 3.0 | 4749 | 0.0827 | 0.9738 | 0.9748 | 0.9743 | 0.9769 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2