--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-pos results: [] --- # xlm-roberta-base-finetuned-pos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the Sajjad's dataset. It achieves the following results on the evaluation set: - Loss: 0.5350 - Precision: 0.8992 - Recall: 0.9129 - F1: 0.9060 - Accuracy: 0.8979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 457 | 0.3629 | 0.8779 | 0.8952 | 0.8865 | 0.8904 | | 0.5823 | 2.0 | 914 | 0.3986 | 0.8870 | 0.9036 | 0.8952 | 0.8879 | | 0.2312 | 3.0 | 1371 | 0.4127 | 0.8891 | 0.9044 | 0.8967 | 0.8887 | | 0.1651 | 4.0 | 1828 | 0.4374 | 0.8885 | 0.9030 | 0.8957 | 0.8870 | | 0.1265 | 5.0 | 2285 | 0.4622 | 0.8923 | 0.9068 | 0.8995 | 0.8912 | | 0.1036 | 6.0 | 2742 | 0.4752 | 0.8962 | 0.9088 | 0.9025 | 0.8946 | | 0.0806 | 7.0 | 3199 | 0.5058 | 0.8950 | 0.9093 | 0.9020 | 0.8933 | | 0.0727 | 8.0 | 3656 | 0.5232 | 0.8996 | 0.9123 | 0.9059 | 0.8976 | | 0.0603 | 9.0 | 4113 | 0.5360 | 0.8970 | 0.9106 | 0.9037 | 0.8952 | | 0.0548 | 10.0 | 4570 | 0.5350 | 0.8992 | 0.9129 | 0.9060 | 0.8979 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2