--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-pos results: [] --- # xlm-roberta-base-finetuned-pos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0221 - Precision: 0.9948 - Recall: 0.9953 - F1: 0.9951 - Accuracy: 0.9957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0343 | 1.0 | 2111 | 0.0226 | 0.9941 | 0.9941 | 0.9941 | 0.9949 | | 0.0205 | 2.0 | 4222 | 0.0230 | 0.9951 | 0.9950 | 0.9951 | 0.9955 | | 0.0137 | 3.0 | 6333 | 0.0221 | 0.9948 | 0.9953 | 0.9951 | 0.9957 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2