|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- eoir_privacy |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: eoir_privacy |
|
type: eoir_privacy |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9175035868005739 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8092868988391376 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the eoir_privacy dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2159 |
|
- Accuracy: 0.9175 |
|
- F1: 0.8093 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.0 | 63 | 0.2343 | 0.9125 | 0.7953 | |
|
| No log | 2.0 | 126 | 0.2269 | 0.9110 | 0.8006 | |
|
| No log | 3.0 | 189 | 0.2159 | 0.9175 | 0.8093 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|