File size: 1,666 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/bin/bash

# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!

# Uncomment and set the following variables correspondingly to run this script:

################## VICUNA ##################
# PROMPT_VERSION=v1
# MODEL_VERSION="vicuna-v1-3-7b"
################## VICUNA ##################

################## LLaMA-2 ##################
# PROMPT_VERSION="llava_llama_2"
# MODEL_VERSION="llama-2-7b-chat"
################## LLaMA-2 ##################

deepspeed llava/train/train_mem.py \
    --deepspeed ./scripts/zero2.json \
    --lora_enable True \
    --model_name_or_path ./checkpoints/$MODEL_VERSION \
    --version $PROMPT_VERSION \
    --data_path ./playground/data/llava_instruct_80k.json \
    --image_folder /path/to/coco/train2017 \
    --vision_tower openai/clip-vit-large-patch14 \
    --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
    --mm_vision_select_layer -2 \
    --mm_use_start_end False \
    --mm_use_patch_token False \
    --bf16 True \
    --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \
    --num_train_epochs 1 \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 50000 \
    --save_total_limit 1 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 2048 \
    --gradient_checkpointing True \
    --lazy_preprocess True \
    --dataloader_num_workers 4 \
    --report_to wandb