model1 / handler.py
multitensor's picture
Upload folder using huggingface_hub
bbfa6f6 verified
import sys
import torch
import os
import random
import base64
import msgpack
from io import BytesIO
import numpy as np
from transformers import AutoTokenizer
from llava.constants import MM_TOKEN_INDEX, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN, DEFAULT_VIDEO_TOKEN, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_images_v2
from llava.model.builder import load_pretrained_model
from llava.model.multimodal_encoder.processor import Blip2ImageTrainProcessor
from llava.model import LlavaMistralForCausalLM
from transformers import CLIPImageProcessor
from PIL import Image
import logging
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
def select_frames(input_frames, num_segments = 10):
indices = np.linspace(start=0, stop=len(input_frames)-1, num=num_segments).astype(int)
frames = [input_frames[ind] for ind in indices]
return frames
def load_model(model_path, device_map):
kwargs = {"device_map": device_map}
kwargs['torch_dtype'] = torch.float16 #difference with cpu handler but it needs float16 to ensure no memory issue
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlavaMistralForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model(device_map=device_map)
return model, tokenizer
class EndpointHandler:
def __init__(self):
model_path = './masp_094_v2'
disable_torch_init()
model_path = os.path.expanduser(model_path)
#print(model_path)
model_name = get_model_name_from_path(model_path)
model, tokenizer = load_model(model_path, device_map={"":0})
image_processor = Blip2ImageTrainProcessor(
image_size=model.config.img_size,
is_training=False)
"""
import os
from PIL import Image
input_dir = './v12044gd0000clg1n4fog65p7pag5n6g/video'
image_paths = os.listdir(input_dir)
images = [Image.open(os.path.join(input_dir, item)) for item in image_paths]
num_segments = 10
images = images[:num_segments]
import torch
device = torch.device('cuda:0')
image_processor = Blip2ImageTrainProcessor(
image_size=224,
is_training=False)
images_tensor = [image_processor.preprocess(image).cpu().to(device) for image in images]
"""
self.tokenizer = tokenizer
self.device = torch.device('cuda:0') #another difference here
self.model = model.to(self.device)
self.image_processor = image_processor
self.conv_mode = 'v1'
def inference_frames_batch(self, batch_image_lists, batch_prompts, batch_temperatures):
start_time = time.perf_counter() # Start timer
batch_size = len(batch_image_lists)
# Process images and prompts for each item in the batch
images_tensors_list = []
input_ids_list = []
for images, prompt in zip(batch_image_lists, batch_prompts):
# Select frames (ensure consistent number of frames)
if len(images) > 10:
images = select_frames(images)
if len(images) < 10:
images += [images[-1]] * (10 - len(images)) # Pad to 10 frames
# Process images
images_tensor = process_images_v2(images, self.image_processor, self.model.config)
images_tensor = images_tensor.half().to(self.device) # Ensure correct dtype and device
images_tensors_list.append(images_tensor)
# Prepare the prompt
if len(images) == 1:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt
else:
qs = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_TOKEN + DEFAULT_VIDEO_END_TOKEN + '\n' + prompt
# Build conversation and tokenize
conv = conv_templates[self.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt_text = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_text, self.tokenizer, MM_TOKEN_INDEX, return_tensors='pt').squeeze(0)
input_ids_list.append(input_ids)
# Pad input IDs to the same length
input_ids_padded = torch.nn.utils.rnn.pad_sequence(
input_ids_list,
batch_first=True,
padding_value=self.tokenizer.pad_token_id
).to(self.device)
# No need to stack images_tensors_list into a tensor
# Each item in images_tensors_list is a tensor of shape (num_frames, C, H, W)
# Prepare stopping criteria
conv = conv_templates[self.conv_mode].copy()
stop_str = conv.sep if conv.sep2 is None else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids_padded)
# Use the first temperature for simplicity
temperature = batch_temperatures[0]
# Perform model inference
with torch.inference_mode():
output_ids = self.model.generate(
input_ids_padded,
images=images_tensors_list,
temperature=temperature,
do_sample=True,
top_p=None,
num_beams=1,
no_repeat_ngram_size=3,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
# Decode outputs
outputs = []
for output_id in output_ids:
output = self.tokenizer.decode(output_id, skip_special_tokens=True).strip()
output = output.rstrip(stop_str).strip()
outputs.append(output)
end_time = time.perf_counter() # End timer
latency = end_time - start_time
print(f"Latency for this batch inference: {latency:.4f} seconds")
return outputs
def __call__(self, request):
# Unpack the images and prompts
packed_data_list = request['images'] # List of packed image data
prompt_list = request.get('prompt', [''.encode()] * len(packed_data_list))
temperature_list = request.get('temperature', ['0.01'.encode()] * len(packed_data_list))
# Initialize lists to collect images, prompts, and temperatures
all_image_lists = [] # List of lists of images
all_prompts = []
all_temperatures = []
for packed_data, prompt_encoded, temperature_encoded in zip(packed_data_list, prompt_list, temperature_list):
# Unpack the images
unpacked_data = msgpack.unpackb(packed_data, raw=False)
image_list = [Image.open(BytesIO(byte_data)).convert('RGB') for byte_data in unpacked_data]
all_image_lists.append(image_list)
# Decode the prompt
prompt = prompt_encoded.decode()
if prompt == '':
if len(image_list) == 1:
prompt = "Please describe this image in detail."
else:
prompt = "Describe the following video in detail."
all_prompts.append(prompt)
# Decode the temperature
temperature = float(temperature_encoded.decode())
all_temperatures.append(temperature)
# Now process all_image_lists and all_prompts in batch
with torch.no_grad():
outputs = self.inference_frames_batch(all_image_lists, all_prompts, all_temperatures)
return {'output': outputs}
def benchmark_qps_batched(handler, batched_request, num_batches=10):
start_time = time.perf_counter()
completed_samples = 0
for _ in range(num_batches):
handler(batched_request)
completed_samples += len(batched_request['images'])
end_time = time.perf_counter()
total_time = end_time - start_time
qps = completed_samples / total_time
print(f"Processed {completed_samples} samples in {total_time:.2f} seconds. QPS: {qps:.2f}")
if __name__ == "__main__":
# 7347652962333773061
video_dir = './v12044gd0000cl5c6rfog65i2eoqcqig'
#video_dir = '/mnt/bn/data-tns-algo-masp/kaili.zhao/data/masp_data/train/human_annotation/video_frames_2fps/7347652962333773061'
frames = [(int(os.path.splitext(item)[0]), os.path.join(video_dir, item)) for item in os.listdir(video_dir)]
frames = [item[1] for item in sorted(frames, key=lambda x: x[0])]
out_frames = [Image.open(frame).convert('RGB') for frame in frames]
# out_frames = select_frames(frames)
# Number of samples to include in the batch
batch_size = 4 # Adjust based on GPU memory
# Prepare batched data
batched_packed_data = []
batched_prompts = []
batched_temperatures = []
for _ in range(batch_size):
# Convert images to byte format
byte_images = []
for img in out_frames:
byte_io = BytesIO()
img.save(byte_io, format='JPEG')
byte_images.append(byte_io.getvalue())
# Pack the byte data with msgpack
packed_data = msgpack.packb(byte_images)
batched_packed_data.append(packed_data)
# Add prompt and temperature for each sample
batched_prompts.append(''.encode()) # Or specific prompts
batched_temperatures.append('0.01'.encode())
# Create the batched request
batched_request = {
'images': batched_packed_data,
'prompt': batched_prompts,
'temperature': batched_temperatures,
}
handler = EndpointHandler()
# Measure latency for the batched request
#print("\nMeasuring latency for batched request...")
response = handler(batched_request)
print(response)#['output'])
# Benchmark QPS with batched requests
# print("\nBenchmarking QPS with batched requests...")
# num_batches = 10 # Number of batched requests
# benchmark_qps_batched(handler, batched_request, num_batches=num_batches)