#!/bin/bash # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! # Uncomment and set the following variables correspondingly to run this script: ################## VICUNA ################## # PROMPT_VERSION=v1 # MODEL_VERSION="vicuna-v1-3-7b" ################## VICUNA ################## ################## LLaMA-2 ################## # PROMPT_VERSION="llava_llama_2" # MODEL_VERSION="llama-2-7b-chat" ################## LLaMA-2 ################## deepspeed llava/train/train_mem.py \ --deepspeed ./scripts/zero2.json \ --lora_enable True \ --bits 4 \ --model_name_or_path ./checkpoints/$MODEL_VERSION \ --version $PROMPT_VERSION \ --data_path ./playground/data/llava_instruct_80k.json \ --image_folder /path/to/coco/train2017 \ --vision_tower openai/clip-vit-large-patch14 \ --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ --mm_vision_select_layer -2 \ --mm_use_start_end False \ --mm_use_patch_token False \ --bf16 True \ --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \ --num_train_epochs 1 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --lazy_preprocess True \ --dataloader_num_workers 4 \ --report_to wandb