#!/bin/bash # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! deepspeed llava/train/train_mem.py \ --deepspeed ./scripts/zero2.json \ --model_name_or_path lmsys/vicuna-13b-v1.3 \ --version $PROMPT_VERSION \ --data_path /Data/ScienceQA/data/scienceqa/llava_train_QCM-LEA.json \ --image_folder /Data/ScienceQA/data/scienceqa/images/train \ --vision_tower openai/clip-vit-large-patch14 \ --pretrain_mm_mlp_adapter ./checkpoints/huggingface/liuhaotian/llava-pretrain-vicuna-13b-v1.3/mm_projector.bin \ --mm_vision_select_layer -2 \ --mm_use_start_end False \ --mm_use_patch_token False \ --bf16 True \ --output_dir ./checkpoints/llava-vicuna-13b-v1.3-pretrain_lcs558k_plain-ScienceQA_QCM_LEA-12e \ --num_train_epochs 12 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to wandb