File size: 2,029 Bytes
6ec780b c640d09 865c225 c640d09 865c225 c640d09 865c225 c640d09 865c225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- merge
---
# mistral-7b-merged-dare-v2
mistral-7b-merged-dare-v2 is a merge of the following models:
## 🧩 Configuration
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
- model: samir-fama/SamirGPT-v1
parameters:
density: 0.53
weight: 0.4
- model: abacusai/Slerp-CM-mist-dpo
parameters:
density: 0.53
weight: 0.3
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
parameters:
density: 0.53
weight: 0.3
- model: Weyaxi/Einstein-v4-7B
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mistral-7b-merged-dare_6x7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Why the sky is blue"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mychen76__mistral-7b-merged-dare_6x7)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.46|
|AI2 Reasoning Challenge (25-Shot)|69.62|
|HellaSwag (10-Shot) |87.04|
|MMLU (5-Shot) |65.18|
|TruthfulQA (0-shot) |66.98|
|Winogrande (5-shot) |80.58|
|GSM8k (5-shot) |71.34|
|