dovedovepigeon
commited on
Commit
•
d4716cf
1
Parent(s):
dadf922
Update README.md
Browse files
README.md
CHANGED
@@ -5,197 +5,149 @@ language:
|
|
5 |
- ja
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
|
12 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
13 |
-
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
17 |
|
18 |
<!-- Provide a longer summary of what this model is. -->
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
|
22 |
-
- **Developed by:**
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **Language(s) (NLP):** [More Information Needed]
|
27 |
-
- **License:** [More Information Needed]
|
28 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
29 |
-
|
30 |
-
### Model Sources [optional]
|
31 |
-
|
32 |
-
<!-- Provide the basic links for the model. -->
|
33 |
-
|
34 |
-
- **Repository:** [More Information Needed]
|
35 |
-
- **Paper [optional]:** [More Information Needed]
|
36 |
-
- **Demo [optional]:** [More Information Needed]
|
37 |
-
|
38 |
-
## Uses
|
39 |
-
|
40 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
41 |
-
|
42 |
-
### Direct Use
|
43 |
-
|
44 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
45 |
-
|
46 |
-
[More Information Needed]
|
47 |
-
|
48 |
-
### Downstream Use [optional]
|
49 |
-
|
50 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Out-of-Scope Use
|
55 |
-
|
56 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
## Bias, Risks, and Limitations
|
61 |
-
|
62 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
63 |
-
|
64 |
-
[More Information Needed]
|
65 |
-
|
66 |
-
### Recommendations
|
67 |
-
|
68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
-
|
70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
|
72 |
## How to Get Started with the Model
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
|
175 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
|
177 |
**BibTeX:**
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
5 |
- ja
|
6 |
---
|
7 |
|
8 |
+
# NAIST-NICT WMT’23 General MT Task Submission
|
9 |
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
|
|
|
|
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
+
Translation models for submission to WMT'23 English ↔ Japanese general machine translation task.
|
19 |
+
This repository provides:
|
20 |
+
- seven models per language direction using various combinations of hyperparameters ( `ckpt/` )
|
21 |
+
- a datastore per language direction for kNN-MT ( `index/` )
|
22 |
|
23 |
+
For more details, please see [NAIST-NICT WMT’23 General MT Task Submission](https://aclanthology.org/2023.wmt-1.7/).
|
24 |
|
25 |
+
- **Developed by:** Hiroyuki Deguchi, Kenji Imamura, Yuto Nishida, Yusuke Sakai, Justin Vasselli, Taro Watanabe.
|
26 |
+
- **Model type:** Translation model
|
27 |
+
- **Language pairs:** Japanese-to-English and English-to-Japanese
|
28 |
+
- **License:** MIT Licence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## How to Get Started with the Model
|
31 |
|
32 |
+
You can use our models with [fairseq](https://github.com/facebookresearch/fairseq).
|
33 |
+
```
|
34 |
+
git clone https://github.com/pytorch/fairseq
|
35 |
+
cd fairseq
|
36 |
+
pip install --editable ./
|
37 |
+
```
|
38 |
+
|
39 |
+
### Preprocess
|
40 |
+
First preprocess the data:
|
41 |
+
```
|
42 |
+
DATA_BIN=<path to save preprocessed data>
|
43 |
+
fairseq-preprocess --source-lang <source language> --target-lang <target language> \
|
44 |
+
--testpref <prefix of test text> \
|
45 |
+
--destdir ${DATA_BIN} \
|
46 |
+
--workers 20
|
47 |
+
```
|
48 |
+
|
49 |
+
|
50 |
+
### Beam Search
|
51 |
+
Inference with beam search:
|
52 |
+
```
|
53 |
+
fairseq-generate \
|
54 |
+
--gen-subset test \
|
55 |
+
--task translation \
|
56 |
+
--source-lang <source language> \
|
57 |
+
--target-lang <target language> \
|
58 |
+
--path <path to model> \
|
59 |
+
--nbest 50 \
|
60 |
+
--beam 50 \
|
61 |
+
--max-tokens 1024 \
|
62 |
+
--required-batch-size-multiple 1 \
|
63 |
+
${DATA_BIN}/
|
64 |
+
```
|
65 |
+
|
66 |
+
### Ensemble
|
67 |
+
Inference with model ensembling:
|
68 |
+
```
|
69 |
+
MODEL1=<path to model1>
|
70 |
+
MODEL2=<path to model2>
|
71 |
+
...
|
72 |
+
MODEL7=<path to model7>
|
73 |
+
|
74 |
+
fairseq-generate \
|
75 |
+
--gen-subset test \
|
76 |
+
--task translation \
|
77 |
+
--source-lang <source language> \
|
78 |
+
--target-lang <target language> \
|
79 |
+
--path ${MODEL1}:${MODEL2}:${MODEL3}:${MODEL4}:${MODEL5}:${MODEL6}:${MODEL7} \
|
80 |
+
--seed 0 \
|
81 |
+
--nbest 50 \
|
82 |
+
--beam 50 \
|
83 |
+
--max-tokens 1024 \
|
84 |
+
--required-batch-size-multiple 1 \
|
85 |
+
${DATA_BIN}/
|
86 |
+
```
|
87 |
+
|
88 |
+
### Diversified Decoding (Nucleus Sampling)
|
89 |
+
Inference with nucleus (top-p) sampling:
|
90 |
+
```
|
91 |
+
|
92 |
+
fairseq-generate \
|
93 |
+
--gen-subset test \
|
94 |
+
--task translation \
|
95 |
+
--source-lang <source language> \
|
96 |
+
--target-lang <target language> \
|
97 |
+
--seed 0 \
|
98 |
+
--path <path to model> \
|
99 |
+
--nbest 50 \
|
100 |
+
--beam 50 \
|
101 |
+
--max-tokens 1024 \
|
102 |
+
--sampling \
|
103 |
+
--sampling-topp <hyperparameter> \
|
104 |
+
--required-batch-size-multiple 1 \
|
105 |
+
${DATA_BIN}/
|
106 |
+
```
|
107 |
+
|
108 |
+
### kNN-MT
|
109 |
+
#### Concat index files
|
110 |
+
We uploaded splitted index files.
|
111 |
+
You can concat files and check md5sum as follows:
|
112 |
+
```
|
113 |
+
echo '68b29d7d1483c88b33804828854b28d7' > original.md5 # for English
|
114 |
+
echo '77ecbd3aaad7f48814f1c4ae95821256' > original.md5 # for Japanese
|
115 |
+
|
116 |
+
cat index.ffn_in.l2.bin.part* > index.ffn_in.l2.bin.reconstructed
|
117 |
+
md5sum index.ffn_in.l2.bin.reconstructed > reconstructed.md5
|
118 |
+
diff original.md5 reconstructed.md5
|
119 |
+
```
|
120 |
+
|
121 |
+
#### Inference
|
122 |
+
You can use [knn-seq](https://github.com/naist-nlp/knn-seq).
|
123 |
+
|
124 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
127 |
|
128 |
**BibTeX:**
|
129 |
|
130 |
+
```
|
131 |
+
@inproceedings{deguchi-etal-2023-naist,
|
132 |
+
title = "{NAIST}-{NICT} {WMT}{'}23 General {MT} Task Submission",
|
133 |
+
author = "Deguchi, Hiroyuki and
|
134 |
+
Imamura, Kenji and
|
135 |
+
Nishida, Yuto and
|
136 |
+
Sakai, Yusuke and
|
137 |
+
Vasselli, Justin and
|
138 |
+
Watanabe, Taro",
|
139 |
+
editor = "Koehn, Philipp and
|
140 |
+
Haddow, Barry and
|
141 |
+
Kocmi, Tom and
|
142 |
+
Monz, Christof",
|
143 |
+
booktitle = "Proceedings of the Eighth Conference on Machine Translation",
|
144 |
+
month = dec,
|
145 |
+
year = "2023",
|
146 |
+
address = "Singapore",
|
147 |
+
publisher = "Association for Computational Linguistics",
|
148 |
+
url = "https://aclanthology.org/2023.wmt-1.7",
|
149 |
+
doi = "10.18653/v1/2023.wmt-1.7",
|
150 |
+
pages = "110--118",
|
151 |
+
abstract = "In this paper, we describe our NAIST-NICT submission to the WMT{'}23 English ↔ Japanese general machine translation task. Our system generates diverse translation candidates and reranks them using a two-stage reranking system to find the best translation. First, we generated 50 candidates each from 18 translation methods using a variety of techniques to increase the diversity of the translation candidates. We trained seven models per language direction using various combinations of hyperparameters. From these models we used various decoding algorithms, ensembling the models, and using kNN-MT (Khandelwal et al., 2021). We processed the 900 translation candidates through a two-stage reranking system to find the most promising candidate. In the first step, we compared 50 candidates from each translation method using DrNMT (Lee et al., 2021) and returned the candidate with the best score. We ranked the final 18 candidates using COMET-MBR (Fernandes et al., 2022) and returned the best score as the system output. We found that generating diverse translation candidates improved translation quality using the well-designed reranker model.",
|
152 |
+
}
|
153 |
+
```
|