{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## How tu use\n", "\n", "- Install [yolov5](https://github.com/fcakyon/yolov5-pip):\n", "\n", "```bash\n", "pip install -U yolov5\n", "```\n", "\n", "- Load model and perform prediction:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import yolov5\n", "\n", "# load model\n", "model = yolov5.load('best.pt')\n", " \n", "# set model parameters\n", "model.conf = 0.25 # NMS confidence threshold\n", "model.iou = 0.45 # NMS IoU threshold\n", "model.agnostic = False # NMS class-agnostic\n", "model.multi_label = False # NMS multiple labels per box\n", "model.max_det = 1000 # maximum number of detections per image\n", "\n", "# set image\n", "img = 'https://dl.ndl.go.jp/api/iiif/2534020/T0000001/full/full/0/default.jpg'\n", "\n", "# perform inference\n", "results = model(img, size=640)\n", "\n", "# inference with test time augmentation\n", "results = model(img, augment=True)\n", "\n", "# parse results\n", "predictions = results.pred[0]\n", "boxes = predictions[:, :4] # x1, y1, x2, y2\n", "scores = predictions[:, 4]\n", "categories = predictions[:, 5]\n", "\n", "# show detection bounding boxes on image\n", "results.show()\n", "\n", "# save results into \"results/\" folder\n", "results.save(save_dir='results/')\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.11" } }, "nbformat": 4, "nbformat_minor": 2 }