File size: 2,386 Bytes
101f10d eec4d34 101f10d eec4d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
datasets:
- Anthropic/hh-rlhf
- kunishou/hh-rlhf-49k-ja
language:
- ja
library_name: transformers
pipeline_tag: text-generation
---
[cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b)に対して[kunishou/
hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)をpeftを用いて(というより[tloen/alpaca-lora](https://github.com/tloen/alpaca-lora)を改変して)チューニングしたものの差分です。
lora-alpacaから学習時のパラメータは特に変えていません。
```
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
LOAD_8BIT = False
BASE_MODEL = "cyberagent/open-calm-7b"
LORA_WEIGHTS = "nakayama/lora-hh-rlhf-49k-ja-for-open-calm-7b"
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
adapter_name=LORA_WEIGHTS
)
def generate_prompt(instruction, input=None):
if input:
return f"""以下は、タスクを説明する命令と、さらなるコンテキストを提供する入力の組み合わせです。要求を適切に満たすような応答を書きなさい。
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""以下は、ある作業を記述した指示です。依頼を適切に完了させる回答を書きなさい。
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half()
instruction="次の日本の観光地について説明してください。"
input="富士山"
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
generation_output = model.generate(
**inputs,
do_sample=True,
temperature=0.1,
top_p=0.75,
top_k=20,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=128,
repetition_penalty=1.5,
no_repeat_ngram_size=5,
pad_token_id=tokenizer.pad_token_id,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print(output.split("### Response:")[1].strip())
``` |